
Steven S Vogel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3834675/publications.pdf Version: 2024-02-01

STEVEN S VOCEL

#	Article	IF	CITATIONS
1	Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 2013, 494, 238-242.	27.8	1,008
2	Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature, 2003, 423, 168-172.	27.8	869
3	FRET as a biomolecular research tool — understanding its potential while avoiding pitfalls. Nature Methods, 2019, 16, 815-829.	19.0	354
4	Fanciful FRET. Science Signaling, 2006, 2006, re2-re2.	3.6	250
5	Cerulean, Venus, and VenusY67C FRET Reference Standards. Biophysical Journal, 2006, 91, L99-L101.	0.5	213
6	Measurement of FRET Efficiency and Ratio of Donor to Acceptor Concentration in Living Cells. Biophysical Journal, 2006, 91, L39-L41.	0.5	212
7	Lysolipids reversibly inhibit Ca2+-, GTP- and pH-dependent fusion of biological membranes. FEBS Letters, 1993, 318, 71-76.	2.8	181
8	Quantitative Multiphoton Spectral Imaging and Its Use for Measuring Resonance Energy Transfer. Biophysical Journal, 2005, 89, 2736-2749.	0.5	171
9	The endomembrane requirement for cell surface repair. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4592-4597.	7.1	139
10	Deep brain optical measurements of cell type–specific neural activity in behaving mice. Nature Protocols, 2014, 9, 1213-1228.	12.0	115
11	Analysis of pancreatic development in living transgenic zebrafish embryos. Molecular and Cellular Endocrinology, 2001, 177, 117-124.	3.2	111
12	Dysferlin stabilizes stress-induced Ca ²⁺ signaling in the transverse tubule membrane. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20831-20836.	7.1	104
13	Direct membrane retrieval into large vesicles after exocytosis in sea urchin eggs Journal of Cell Biology, 1995, 131, 1183-1192.	5.2	84
14	Concurrent expression of recombination activating genes 1 and 2 in zebrafish olfactory sensory neurons. Genesis, 2001, 29, 156-162.	1.6	76
15	Structural rearrangement of CaMKIIα catalytic domains encodes activation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6369-6374.	7.1	72
16	Anomalous Surplus Energy Transfer Observed with Multiple FRET Acceptors. PLoS ONE, 2009, 4, e8031.	2.5	65
17	Exocytotic Insertion of Calcium Channels Constrains Compensatory Endocytosis to Sites of Exocytosis. Journal of Cell Biology, 2000, 148, 755-768.	5.2	61
18	The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors. PLoS ONE, 2012, 7, e49593.	2.5	60

STEVEN S VOGEL

#	Article	IF	CITATIONS
19	Estimating the distance separating fluorescent protein FRET pairs. Methods, 2014, 66, 131-138.	3.8	60
20	Energy migration alters the fluorescence lifetime of Cerulean: implications for fluorescence lifetime imaging Forster resonance energy transfer measurements. Journal of Biomedical Optics, 2008, 13, 031204.	2.6	59
21	Proteins on exocytic vesicles mediate calcium-triggered fusion Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4749-4753.	7.1	54
22	Submaximal Responses in Calcium-triggered Exocytosis Are Explained by Differences in the Calcium Sensitivity of Individual Secretory Vesicles. Journal of General Physiology, 1998, 112, 559-567.	1.9	53
23	Calcium influx is required for endocytotic membrane retrieval. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5019-5024.	7.1	48
24	Poisson-distributed active fusion complexes underlie the control of the rate and extent of exocytosis by calcium Journal of Cell Biology, 1996, 134, 329-338.	5.2	47
25	Photophysical properties of Cerulean and Venus fluorescent proteins. Journal of Biomedical Optics, 2009, 14, 034047.	2.6	46
26	Fluorescence Polarization and Fluctuation Analysis Monitors Subunit Proximity, Stoichiometry, and Protein Complex Hydrodynamics. PLoS ONE, 2012, 7, e38209.	2.5	46
27	Membrane wounding triggers ATP release and dysferlin-mediated intercellular calcium signaling. Journal of Cell Science, 2010, 123, 1884-1893.	2.0	44
28	The Sea Urchin Cortical Reaction Annals of the New York Academy of Sciences, 1991, 635, 35-44.	3.8	29
29	A Kinetic Analysis of Calcium-Triggered Exocytosis. Journal of General Physiology, 2001, 118, 145-156.	1.9	29
30	Sea urchin egg preparations as systems for the study of calcium-triggered exocytosis. Journal of Physiology, 1999, 520, 15-21.	2.9	26
31	Quantitative linear unmixing of CFP and YFP from spectral images acquired with two-photon excitation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 904-911.	1.5	26
32	Photobleaching of YFP does not produce a CFP-like species that affects FRET measurements. Nature Methods, 2006, 3, 491-491.	19.0	25
33	Reconstitution of Calcium-triggered Membrane Fusion Using "Reserve―Granules. Journal of Biological Chemistry, 1998, 273, 2445-2451.	3.4	23
34	Zinc-Induced Polymerization of Killer-Cell Ig-like Receptor into Filaments Promotes Its Inhibitory Function at Cytotoxic Immunological Synapses. Molecular Cell, 2016, 62, 21-33.	9.7	23
35	Using Caged Calcium to Study Sea Urchin Egg Cortical Granule Exocytosis in Vitro. Methods, 1994, 6, 82-92.	3.8	20
36	Two independent forms of endocytosis maintain embryonic cell surface homeostasis during early development. Developmental Biology, 2008, 316, 135-148.	2.0	20

STEVEN S VOGEL

#	Article	IF	CITATIONS
37	Size, stoichiometry, and organization of soluble LC3-associated complexes. Autophagy, 2014, 10, 861-877.	9.1	19
38	Low pH Inhibits Compensatory Endocytosis at a Step Between Depolarization and Calcium Influx. Traffic, 2002, 3, 397-406.	2.7	18
39	Covert Changes in CaMKII Holoenzyme Structure Identified for Activation and Subsequent Interactions. Biophysical Journal, 2015, 108, 2158-2170.	0.5	17
40	Characterization of synaptophysin and G proteins in synaptic vesicles and plasma membrane ofAplysia californica. Brain Research, 1990, 508, 265-272.	2.2	16
41	Deciphering CaMKII Multimerization Using Fluorescence Correlation Spectroscopy and Homo-FRET Analysis. Biophysical Journal, 2017, 112, 1270-1281.	0.5	16
42	G proteins in Aplysia: biochemical characterization and regional and subcellular distribution. Brain Research, 1989, 478, 281-292.	2.2	15
43	The Calcium Sensitivity of Individual Secretory Vesicles Is Invariant with the Rate of Calcium Delivery. Journal of General Physiology, 1998, 112, 569-576.	1.9	14
44	A Single Amino Acid Change in Inhibitory Killer Cell Ig-like Receptor Results in Constitutive Receptor Self-Association and Phosphorylation. Journal of Immunology, 2015, 194, 817-826.	0.8	13
45	VenusA206 Dimers Behave Coherently at Room Temperature. Biophysical Journal, 2019, 116, 1918-1930.	0.5	10
46	Plasma Membrane Resident 'Fusion Complexes' Mediate Reconstituted Exocytosis. Traffic, 2001, 2, 654-667.	2.7	8
47	FRET 65: A Celebration of Fol̀^rster. Journal of Biomedical Optics, 2012, 17, 011001.	2.6	8
48	A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. Current Protocols in Neuroscience, 2020, 94, e108.	2.6	8
49	Application of a membrane fusion assay for rapid drug screening. Pharmaceutical Research, 1995, 12, 1417-1422.	3.5	7
50	An increase in surface area is not required for cell division in early sea urchin development. Developmental Biology, 2003, 259, 62-70.	2.0	7
51	Channeling Calcium: A Shared Mechanism for Exocytosis–Endocytosis Coupling. Science Signaling, 2009, 2, pe80.	3.6	7
52	Auto-FPFA: An Automated Microscope for Characterizing Genetically Encoded Biosensors. Scientific Reports, 2018, 8, 7374.	3.3	5
53	Chapter 8 Spectral imaging and its use in the measurement of Förster resonance energy transfer in living cells. Laboratory Techniques in Biochemistry and Molecular Biology / Edited By T S Work [and] E Work, 2009, 33, 351-394.	0.2	4
54	An Introduction to Interpreting Time Resolved Fluorescence Anisotropy Curves. Springer Series in Chemical Physics, 2015, , 385-406.	0.2	2