
Eugene A Vishnyakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3834520/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aperiodic multilayer structures in soft X-ray radiation optics. Quantum Electronics, 2012, 42, 143-152.	1.0	25
2	Conception of broadband stigmatic high-resolution spectrometers for the soft X-ray range. Quantum Electronics, 2015, 45, 371-376.	1.0	18
3	High-resolution stigmatic spectrograph for a wavelength range of 125–30 nm. Optics Express, 2018, 26, 19009.	3.4	18
4	Measurements of reflection spectra of soft X-ray multilayer mirrors using a broadband laser-plasma radiation source. Quantum Electronics, 2009, 39, 474-480.	1.0	15
5	Complex of instrumentation KORTES for the EUV and x-ray imaging and spectroscopy of the solar corona. , 2014, , .		12
6	Charge exchange of multiply charged fluorine and lithium ions with Ne atoms. Quantum Electronics, 2010, 40, 545-550.	1.0	11
7	Fabrication and characterization of Sb/B4C multilayer mirrors for soft X-rays. Applied Surface Science, 2014, 307, 360-364.	6.1	11
8	Soft X-ray flat-field VLS spectrographs. Quantum Electronics, 2016, 46, 953-960.	1.0	10
9	Imaging diffraction VLS spectrometer for a wavelength range λ > 120 à Quantum Electronics, 2017, 47, 54-57.	1.0	10
10	Aperiodic reflection diffraction gratings for soft X-ray radiation and their application. Quantum Electronics, 2018, 48, 916-929.	1.0	9
11	Normal-incidence Sb/B4C multilayer mirrors for the 80 à < λ < 120 à wavelength range. Quantum Electronics, 2013, 43, 666-673.	1.0	8
12	Soft X-ray spectrometers based on aperiodic reflection gratings and their application. Physics-Uspekhi, 2021, 64, 495-514.	2.2	7
13	Spectroscopic characterization of novel multilayer mirrors intended for astronomical and laboratory applications. , 2009, , .		6
14	Aperiodic normal-incidence antimony-based multilayer mirrors in the 8 — 13-nm spectral range. Quantum Electronics, 2011, 41, 75-80.	1.0	5
15	Scanning spectrometer/monochromator for a wavelength range of 50–330 à Quantum Electronics, 2019, 49, 779-783.	1.0	4
16	Broadband normal-incidence mirrors for a range of 111–138 à based on an a-periodic Mo/Be multilayer structure. Optical Materials Express, 2021, 11, 3038.	3.0	4
17	lmaging broadband soft X-ray transmission-grating spectrograph for a wavelength range λ > 111 Ã Quantum Electronics, 2020, 50, 967-975.	1.0	4
18	Joint observations of solar corona in space projects ARKA and KORTES. , 2017, , .		4

Joint observations of solar corona in space projects ARKA and KORTES. , 2017, , . 18

2

EUGENE A VISHNYAKOV

#	Article	IF	CITATIONS
19	Spectral characterisation of aperiodic normal-incidence Sb/B4C multilayer mirrors for the λ < 124 Ã range. Quantum Electronics, 2018, 48, 189-196.	1.0	3
20	KORTES Mission for Solar Activity Monitoring Onboard International Space Station. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	3
21	Impact of Merocyanine Dye Concentration in Ultrathin Polymer Films on Nonlinear Optical Response Due to the Aggregation Effect. Molecular Crystals and Liquid Crystals, 2011, 535, 132-139.	0.9	2
22	Imaging VLS grating spectrographs. , 2018, , .		2
23	Broadband Mirrors for Spectroheliographs at the KORTES Sun Study Facility. Technical Physics, 2020, 65, 1792-1799.	0.7	2
24	Normal-Incidence Imaging Spectrograph Based on an Aperiodic Spherical Grating for the Vacuum Spectral Region. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 783-794.	0.6	1
25	WSO-UV mission WUVS instrument FUV-UV CCD detectors qualification campaign main results. , 2021, , .		1
26	Spectral calibration of CCDs and multilayer filters intended for future space applications. Proceedings of SPIE, 2016, , .	0.8	1
27	High-aperture monochromator-reflectometer and its usefulness for CCD calibration. Proceedings of SPIE, 2017, , .	0.8	1
28	Flat-field VLS spectrometers for laboratory applications. , 2017, , .		1
29	Examination of EUV CCDs and their applications for space research of solar flares. , 2019, , .		1
30	CCD272-64 and GSENSE400BSI-GP CMOS quantum efficiency measurement in EUV and VUV. , 2021, , .		0
31	Broadband Sb/B4C multilayer mirrors for XUV spectroscopy applications. , 2018, , .		Ο
32	High Spectral and Spatial Resolution Soft X-ray/XUV VLSÂSpectrographs. Springer Proceedings in Physics, 2020, , 169-174.	0.2	0
33	Evaluation of CCD detector absolute responsivity with the aid of synchrotron radiation. AIP Conference Proceedings, 2020, , .	0.4	ο