
Miguel A Vega-RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3833945/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inter-Algorithm Multiobjective Cooperation for Phylogenetic Reconstruction on Amino Acid Data. IEEE Transactions on Cybernetics, 2022, 52, 3577-3591.	6.2	1
2	Parallel multi-objective optimization approaches for protein encoding. Journal of Supercomputing, 2022, 78, 5118-5148.	2.4	1
3	Exploiting multi-level parallel metaheuristics and heterogeneous computing to boost phylogenetics. Future Generation Computer Systems, 2022, 127, 208-224.	4.9	2
4	A multi-objective optimization approach for the identification of cancer biomarkers from RNA-seq data. Expert Systems With Applications, 2022, 193, 116480.	4.4	6
5	Computational design of phage cocktails based on phage-bacteria infection networks. Computers in Biology and Medicine, 2022, 142, 105186.	3.9	5
6	Decomposition-based multi-objective optimization approach for PPI network alignment. Knowledge-Based Systems, 2022, 243, 108527.	4.0	4
7	A multi-objective memetic algorithm for query-oriented text summarization: Medicine texts as a case study. Expert Systems With Applications, 2022, 198, 116769.	4.4	11
8	PhageCocktail: An R package to design phage cocktails from experimental phage-bacteria infection networks. Computer Methods and Programs in Biomedicine, 2022, 221, 106865.	2.6	1
9	Learning analytics to predict students' performance: A case study of a neurodidactics-based collaborative learning platform. Education and Information Technologies, 2022, 27, 12913-12938.	3.5	5
10	Predicting leaf nitrogen content in olive trees using hyperspectral data for precision agriculture. Precision Agriculture, 2021, 22, 1-21.	3.1	20
11	A stage-based approach to allocating water quality monitoring stations based on the WorldQual model: The Jubba River as a case study. Science of the Total Environment, 2021, 762, 144162.	3.9	3
12	Theory and practice of natural computing: seventh edition. Soft Computing, 2021, 25, 1681-1682.	2.1	0
13	Analysis and comparison of mobility management strategies in public land mobile networks from a multiobjective perspective. Journal of Network and Computer Applications, 2021, 177, 102967.	5.8	1
14	The impact of term-weighting schemes and similarity measures on extractive multi-document text summarization. Expert Systems With Applications, 2021, 169, 114510.	4.4	11
15	Addressing topic modeling with a multi-objective optimization approach based on swarm intelligence. Knowledge-Based Systems, 2021, 225, 107113.	4.0	5
16	A metaheuristic multi-objective optimization method for dynamical network biomarker identification as pre-disease stage signal. Applied Soft Computing Journal, 2021, 109, 107544.	4.1	5
17	Sentiment-oriented query-focused text summarization addressed with a multi-objective optimization approach. Applied Soft Computing Journal, 2021, 113, 107915.	4.1	4
18	Algorithms for Computational Biology: Sixth Edition. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1-1.	1.9	2

#	Article	IF	CITATIONS
19	Algorithms for Computational Biology: Seventh Edition. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2059-2060.	1.9	0
20	Experimental analysis of multiple criteria for extractive multi-document text summarization. Expert Systems With Applications, 2020, 140, 112904.	4.4	25
21	Algorithms for Computational Biology: Fifth Edition. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 1-1.	1.9	1
22	A decomposition-based multi-objective optimization approach for extractive multi-document text summarization. Applied Soft Computing Journal, 2020, 91, 106231.	4.1	31
23	GPU acceleration of Fitch's parsimony on protein data: from Kepler to Turing. Journal of Supercomputing, 2020, 76, 9827-9853.	2.4	1
24	Multiobjective Metaheuristic to Design RNA Sequences. IEEE Transactions on Evolutionary Computation, 2019, 23, 156-169.	7.5	12
25	Comparative Analysis of Intra-Algorithm Parallel Multiobjective Evolutionary Algorithms: Taxonomy Implications on Bioinformatics Scenarios. IEEE Transactions on Parallel and Distributed Systems, 2019, 30, 63-78.	4.0	4
26	Multi-objective memetic meta-heuristic algorithm for encoding the same protein with multiple genes. Expert Systems With Applications, 2019, 136, 83-93.	4.4	5
27	Parallelizing a multi-objective optimization approach for extractive multi-document text summarization. Journal of Parallel and Distributed Computing, 2019, 134, 166-179.	2.7	11
28	Preface. Journal of Computational Biology, 2019, 26, 891-892.	0.8	0
29	Theory and practice of natural computing: Sixth edition. BioSystems, 2019, 186, 104038.	0.9	0
30	Identifying key players in large social networks by using a multi-objective artificial bee colony optimization approach. Applied Soft Computing Journal, 2019, 77, 176-187.	4.1	7
31	Theory and practice of natural computing: fifth edition. Soft Computing, 2019, 23, 1421-1421.	2.1	0
32	Comparative assessment of GPGPU technologies to accelerate objective functions: A case study on parsimony. Journal of Parallel and Distributed Computing, 2019, 126, 67-81.	2.7	4
33	Multi-objective protein encoding: Redefinition of the problem, new problem-aware operators, and approach based on Variable Neighborhood Search. Information Sciences, 2019, 500, 173-189.	4.0	2
34	Algorithms for Computational Biology: Third Edition. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 701-702.	1.9	0
35	Parallel computing in bioinformatics: a view from high-performance, heterogeneous, and cloud computing. Journal of Supercomputing, 2019, 75, 3369-3373.	2.4	5
36	A multiobjective adaptive approach for the inference of evolutionary relationships in protein-based scenarios. Information Sciences, 2019, 485, 281-300.	4.0	5

#	Article	IF	CITATIONS
37	Parallel Programming in Bioinformatics: Some Interesting Approaches. International Journal of Parallel Programming, 2019, 47, 293-295.	1.1	Ο
38	Comparison of automatic methods for reducing the Pareto front to a single solution applied to multi-document text summarization. Knowledge-Based Systems, 2019, 174, 123-136.	4.0	27
39	An Indicator-based Multi-Objective Optimization Approach Applied to Extractive Multi-Document Text Summarization. IEEE Latin America Transactions, 2019, 17, 1291-1299.	1.2	4
40	Multi-Objective Artificial Bee Colony for designing multiple genes encoding the same protein. Applied Soft Computing Journal, 2019, 74, 90-98.	4.1	8
41	Modeling low-resolution galaxy spectral energy distribution with evolutionary algorithms. Neurocomputing, 2019, 326-327, 28-38.	3.5	1
42	Analysis of MOEA/D Approaches for Inferring Ancestral Relationships. Lecture Notes in Computer Science, 2019, , 168-180.	1.0	0
43	A Parallel Multiobjective Metaheuristic for Multiple Sequence Alignment. Journal of Computational Biology, 2018, 25, 1009-1022.	0.8	3
44	Searching for common patterns on protein sequences by means of a parallel hybrid honey-bee mating optimization algorithm. Parallel Computing, 2018, 76, 1-17.	1.3	2
45	A Characteristic-Based Framework for Multiple Sequence Aligners. IEEE Transactions on Cybernetics, 2018, 48, 41-51.	6.2	14
46	Parallelism in computational biology. International Journal of High Performance Computing Applications, 2018, 32, 317-320.	2.4	3
47	Multiobjective characteristic-based framework for very-large multiple sequence alignment. Applied Soft Computing Journal, 2018, 69, 719-736.	4.1	3
48	Extractive multi-document text summarization using a multi-objective artificial bee colony optimization approach. Knowledge-Based Systems, 2018, 159, 1-8.	4.0	68
49	Phylogenetic Reconstructions Using an Indicator-Based Bat Algorithm for Multicore Processors. , 2018, , .		0
50	Preface to the Special Issue:Parallel Computing in Computational Biology: A Technological Point of View. Journal of Computational Biology, 2018, 25, 837-840.	0.8	1
51	Analysis of Scheduling Policies in Metaheuristics for Evolutionary Biology. , 2018, , .		0
52	Multi-Objective Artificial Bee Colony algorithm applied to the bi-objective orienteering problem. Knowledge-Based Systems, 2018, 154, 93-101.	4.0	35
53	Swarm intelligence for optimizing the parameters of multiple sequence aligners. Swarm and Evolutionary Computation, 2018, 42, 16-28.	4.5	6
54	Automatic selection of a single solution from the Pareto front to identify key players in social networks. Knowledge-Based Systems, 2018, 160, 228-236.	4.0	20

#	Article	IF	CITATIONS
55	Optimization of resources in parallel systems using a multiobjective artificial bee colony algorithm. Journal of Supercomputing, 2018, 74, 4019-4036.	2.4	4
56	Multiobjective Frog-Leaping Optimization for the Study of Ancestral Relationships in Protein Data. IEEE Transactions on Evolutionary Computation, 2018, 22, 879-893.	7.5	8
57	Word Clouds as a Learning Analytic Tool for the Cooperative e-Learning Platform NeuroK. , 2018, , .		2
58	Graphs and Key Players in an Educational Social Network. , 2018, , .		1
59	Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach. Soft Computing, 2017, 21, 949-964.	2.1	85
60	A hybrid MPI/OpenMP parallel implementation of NSGA-II for finding patterns in protein sequences. Journal of Supercomputing, 2017, 73, 2285-2312.	2.4	4
61	Accelerating the phylogenetic parsimony function on heterogeneous systems. Concurrency Computation Practice and Experience, 2017, 29, e4046.	1.4	3
62	Asynchronous Non-Generational Model to Parallelize Metaheuristics: A Bioinformatics Case Study. IEEE Transactions on Parallel and Distributed Systems, 2017, 28, 1825-1838.	4.0	7
63	Hardware coprocessors for high-performance symmetric cryptography. Journal of Supercomputing, 2017, 73, 2456-2482.	2.4	4
64	Using biological knowledge for multiple sequence aligner decision making. Information Sciences, 2017, 420, 278-298.	4.0	2
65	Parallelism-based approaches in computational biology: a view from diverse case studies. Cluster Computing, 2017, 20, 1865-1867.	3.5	1
66	A Multi-Objective Artificial Bee Colony-based optimization approach to design water quality monitoring networks in river basins. Journal of Cleaner Production, 2017, 166, 579-589.	4.6	41
67	Reducing Alignment Time Complexity of Ultra-Large Sets of Sequences. Journal of Computational Biology, 2017, 24, 1144-1154.	0.8	1
68	Using mixed mode programming to parallelize an indicator-based evolutionary algorithm for inferring multiobjective phylogenetic histories. Soft Computing, 2017, 21, 5601-5620.	2.1	4
69	Parallel evaluation of nonseparable functions by evolutionary algorithms on GPU. Concurrency Computation Practice and Experience, 2017, 29, e3949.	1.4	2
70	A fine-grained parallel approach for the registration areas optimization. Logic Journal of the IGPL, 2017, 25, 862-876.	1.3	0
71	An Accuracy-Aware Implementation of Two-Point Three-Dimensional Correlation Function Using Bin-Recycling Strategy on GPU. , 2017, , .		0
72	NeuroK: A Collaborative e-Learning Platform based on Pedagogical Principles from Neuroscience. , 2017, , .		5

#	Article	IF	CITATIONS
73	Solving the Location Area Problem by Using Differential Evolution. Journal of Communications Software and Systems, 2017, 4, 131.	0.6	2
74	Improving Multiobjective Phylogenetic Searches by Using a Parallel \$\$varepsilon \$\$-Dominance Based Adaptation of the Firefly Algorithm. Lecture Notes in Computer Science, 2017, , 384-396.	1.0	0
75	Parallel Multi-objective Optimization for High-Order Epistasis Detection. Lecture Notes in Computer Science, 2017, , 523-532.	1.0	1
76	Applying the MOVNS (multi-objective variable neighborhood search) algorithm to solve the path planning problem in mobile robotics. Expert Systems With Applications, 2016, 58, 20-35.	4.4	40
77	Fattened backfilling: An improved strategy for job scheduling in parallel systems. Journal of Parallel and Distributed Computing, 2016, 97, 69-77.	2.7	19
78	An Efficient Way of Assigning Paging Areas by Using Mobility Models. IEEE/ACM Transactions on Networking, 2016, 24, 3726-3739.	2.6	5
79	Bin recycling strategy for improving the histogram precision on GPU. Computer Physics Communications, 2016, 204, 55-63.	3.0	5
80	Performance evaluation of dominance-based and indicator-based multiobjective approaches for phylogenetic inference. Information Sciences, 2016, 330, 293-314.	4.0	18
81	A Comparative Study of Different Motif Occurrence Models Applied to a Hybrid Multiobjective Shuffle Frog Leaping Algorithm. Computer Journal, 2016, 59, 384-402.	1.5	1
82	Hybrid multiobjective artificial bee colony for multiple sequence alignment. Applied Soft Computing Journal, 2016, 41, 157-168.	4.1	38
83	A Hybrid Multiobjective Memetic Metaheuristic for Multiple Sequence Alignment. IEEE Transactions on Evolutionary Computation, 2016, 20, 499-514.	7.5	37
84	Intelligent selfâ€adaptive resources selection for grid applications. Concurrency Computation Practice and Experience, 2015, 27, 3539-3560.	1.4	1
85	Performance and energy aware scheduling simulator for HPC: evaluating different resource selection methods. Concurrency Computation Practice and Experience, 2015, 27, 5436-5459.	1.4	5
86	Parallelismâ€based technologies in bioinformatics and biomedicine: a view from diverse perspectives. Concurrency Computation Practice and Experience, 2015, 27, 5473-5475.	1.4	0
87	Particle Swarm Optimizer with Finite Velocity of Information Transmission. Lecture Notes in Computer Science, 2015, , 157-169.	1.0	0
88	Message from the PBio 2015 Workshop Chairs. , 2015, , .		0
89	Parallel H4MSA for Multiple Sequence Alignment. , 2015, , .		5
90	Multiobjective swarm intelligence for the traffic grooming problem. Computational Optimization and Applications, 2015, 60, 479-511.	0.9	2

6

#	Article	IF	CITATIONS
91	Optimizing the mobility management task in networks of four world capital cities. Journal of Network and Computer Applications, 2015, 51, 18-28.	5.8	12
92	A hybrid approach to parallelize a fast nonâ€dominated sorting genetic algorithm for phylogenetic inference. Concurrency Computation Practice and Experience, 2015, 27, 702-734.	1.4	13
93	Finding Patterns in Protein Sequences by Using a Hybrid Multiobjective Teaching Learning Based Optimization Algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 656-666.	1.9	21
94	Multiobjective optimization algorithms for motif discovery in DNA sequences. Genetic Programming and Evolvable Machines, 2015, 16, 167-209.	1.5	4
95	On the design of shared memory approaches to parallelize a multiobjective bee-inspired proposal for phylogenetic reconstruction. Information Sciences, 2015, 324, 163-185.	4.0	8
96	Multiobjective Small-World Optimization for Energy Saving in Grid Environments. Computer Journal, 2015, 58, 432-447.	1.5	3
97	MOSFLA-MRPP: Multi-Objective Shuffled Frog-Leaping Algorithm applied to Mobile Robot Path Planning. Engineering Applications of Artificial Intelligence, 2015, 44, 123-136.	4.3	57
98	A Comparative Analysis of Adaptive Solutions for Grid Environments. International Journal of Parallel Programming, 2015, 43, 786-811.	1.1	1
99	A multiobjective study of the Gaussian cluster paging in the Reporting Cells strategy. Applied Soft Computing Journal, 2015, 28, 332-344.	4.1	4
100	A Comparison Exercise on Parallel Evaluation of Rosenbrock Function. , 2015, , .		1
101	A Parallel Multiobjective Approach based on Honey Bees for Traffic Grooming in Optical Networks. Computer Journal, 2015, 58, 2171-2191.	1.5	1
102	Multi-objective energy optimization in grid systems from a brain storming strategy. Soft Computing, 2015, 19, 3159-3172.	2.1	16
103	Parallel Multiobjective Metaheuristics for Inferring Phylogenies on Multicore Clusters. IEEE Transactions on Parallel and Distributed Systems, 2015, 26, 1678-1692.	4.0	12
104	Embedded intelligence for fast QoS-based vertical handoff in heterogeneous wireless access networks. Pervasive and Mobile Computing, 2015, 19, 141-155.	2.1	24
105	Multiobjective evolutionary algorithm based on decomposition for 3-objective optimization problems with objectives in different scales. Soft Computing, 2015, 19, 157-166.	2.1	10
106	A Comparative Study of Parallel RANSAC Implementations in 3D Space. International Journal of Parallel Programming, 2015, 43, 703-720.	1.1	11
107	Parallelizing NSGAII for Accelerating the Registration Areas Optimization in Mobile Communication Networks. Lecture Notes in Computer Science, 2015, , 620-631.	1.0	1
108	A COMPARATIVE STUDY OF SOFTWARE FILTERS APPLIED AS A PREVIOUS STEP OF THE ICP ALGORITHM IN ROBOT LOCATION. Journal of Circuits, Systems and Computers, 2014, 23, 1450118.	1.0	1

#	Article	IF	CITATIONS
109	Studying the Reporting Cells strategy in a realistic mobile environment. , 2014, , .		1
110	A multiobjective evolutionary algorithm based on decomposition with normal boundary intersection for traffic grooming in optical networks. Information Sciences, 2014, 289, 91-116.	4.0	14
111	POSTER: High-performance implementations for shear-shear correlation calculation. , 2014, , .		1
112	A Trajectory-Based Heuristic to Solve a Three-Objective Optimization Problem for Wireless Sensor Network Deployment. Lecture Notes in Computer Science, 2014, , 27-38.	1.0	2
113	Designing a fineâ€grained parallel differential evolution with Pareto tournaments for solving an optical networking problem. Concurrency Computation Practice and Experience, 2014, 26, 1908-1934.	1.4	Ο
114	Swarm approach based on gravity for optimizing energy savings in grid systems. Journal of Heuristics, 2014, 20, 617-641.	1.1	0
115	Cost optimization based on brain storming for grid scheduling. , 2014, , .		7
116	Applying OpenMP-based parallel implementations of NSGA-II and SPEA2 to study phylogenetic relationships. , 2014, , .		3
117	A comparative study of parallel software SURF implementations. Concurrency Computation Practice and Experience, 2014, 26, 2758-2771.	1.4	4
118	Performance analysis of Multiobjective Artificial Bee Colony implementations for phylogenetic reconstruction. , 2014, , .		1
119	Parallelizing and optimizing a hybrid differential evolution with Pareto tournaments for discovering motifs in DNA sequences. Journal of Supercomputing, 2014, 70, 880-905.	2.4	3
120	DNA strand generation for DNA computing by using a multi-objective differential evolution algorithm. BioSystems, 2014, 116, 49-64.	0.9	22
121	Convergence analysis of some multiobjective evolutionary algorithms when discovering motifs. Soft Computing, 2014, 18, 853-869.	2.1	6
122	On the use of multiobjective optimization for solving the Location Areas strategy with different paging procedures in a realistic mobile network. Applied Soft Computing Journal, 2014, 18, 146-157.	4.1	11
123	A self-adaptive resources selection model through a small-world based heuristic. Journal of Supercomputing, 2014, 68, 1441-1461.	2.4	1
124	The software project scheduling problem: A scalability analysis of multi-objective metaheuristics. Applied Soft Computing Journal, 2014, 15, 136-148.	4.1	53
125	Performance assessment of multiobjective approaches in optical Traffic Grooming. Journal of Network and Computer Applications, 2014, 41, 319-350.	5.8	1
126	GPU-based shear–shear correlation calculation. Computer Physics Communications, 2014, 185, 11-18.	3.0	11

#	Article	IF	CITATIONS
127	Hardware security platform for multicast communications. Journal of Systems Architecture, 2014, 60, 11-21.	2.5	7
128	Energy optimization for task scheduling in distributed systems by an Artificial Bee Colony approach. , 2014, , .		0
129	Self-adaptivity for grid applications. An Efficient Resources Selection model based on evolutionary computation algorithms. Parallel Computing, 2014, 40, 345-361.	1.3	1
130	Performance and precision of histogram calculation on GPUs: Cosmological analysis as a case study. Computer Physics Communications, 2014, 185, 2558-2565.	3.0	7
131	Solving the location areas management problem with multi-objective evolutionary strategies. Wireless Networks, 2014, 20, 1909-1924.	2.0	6
132	A multiobjective approach based on the behavior of fireflies to generate reliable DNA sequences for molecular computing. Applied Mathematics and Computation, 2014, 227, 291-308.	1.4	10
133	An improved multiobjective approach inspired by the flashing behaviour of fireflies for Traffic Grooming in optical WDM networks. Applied Soft Computing Journal, 2014, 21, 617-636.	4.1	3
134	A service robot for monitoring elderly people in the context of Ambient Assisted Living. Journal of Ambient Intelligence and Smart Environments, 2014, 6, 595-621.	0.8	15
135	Evolutionary team based on different metaheuristics for solving a real-world problem in the telecommunication domain. Engineering Computations, 2014, 31, 1550-1581.	0.7	0
136	Non-dominated Sorting and a Novel Formulation in the Reporting Cells Planning. Lecture Notes in Computer Science, 2014, , 285-295.	1.0	3
137	Gene Variants and Haplotypes Modifying Transcription Factor Binding Sites in the Human Cyclooxygenase 1 and 2 (PTGS1 and PTGS2) Genes. Current Drug Metabolism, 2014, 15, 182-195.	0.7	26
138	INTELLIGENT RELAY NODE PLACEMENT IN HETEROGENEOUS WIRELESS SENSOR NETWORKS FOR ENERGY EFFICIENCY. International Journal of Robotics and Automation, 2014, 29, .	0.1	2
139	A Strength Pareto Approach to Solve the Reporting Cells Planning Problem. Lecture Notes in Computer Science, 2014, , 212-223.	1.0	Ο
140	A Strength Pareto Approach and a Novel Formulation in the Reporting Cells Planning. Advances in Intelligent Systems and Computing, 2014, , 1-10.	0.5	0
141	Metaheuristics for Modelling Low-Resolution Galaxy Spectral Energy Distribution. Lecture Notes in Computer Science, 2014, , 490-501.	1.0	1
142	Studying the Reporting Cells Planning with the Non-dominated Sorting Genetic Algorithm II. Lecture Notes in Computer Science, 2014, , 63-74.	1.0	1
143	Multiobjective Metaheuristics for Traffic Grooming in Optical Networks. IEEE Transactions on Evolutionary Computation, 2013, 17, 457-473.	7.5	24
144	A new Multiobjective Artificial Bee Colony algorithm to solve a real-world frequency assignment problem. Neural Computing and Applications, 2013, 22, 1447-1459.	3.2	25

#	Article	IF	CITATIONS
145	Energy-aware design space exploration of embedded systems. Journal of Systems Architecture, 2013, 59, 601-602.	2.5	Ο
146	MOEA/D for traffic grooming in WDM optical networks. , 2013, , .		1
147	A multiobjective approach based on artificial bee colony for the static routing and wavelength assignment problem. Soft Computing, 2013, 17, 199-211.	2.1	16
148	Applying a multiobjective metaheuristic inspired by honey bees to phylogenetic inference. BioSystems, 2013, 114, 39-55.	0.9	21
149	Distributed and asynchronous solver for large CPU intensive problems. Applied Soft Computing Journal, 2013, 13, 2547-2556.	4.1	5
150	A Multiobjective Proposal Based on the Firefly Algorithm for Inferring Phylogenies. Lecture Notes in Computer Science, 2013, , 141-152.	1.0	8
151	Routing Low-Speed Traffic Requests onto High-Speed Lightpaths by Using a Multiobjective Firefly Algorithm. Lecture Notes in Computer Science, 2013, , 12-21.	1.0	3
152	A Multi-objective Proposal Based on Firefly Behaviour for Green Scheduling in Grid Systems. Lecture Notes in Computer Science, 2013, , 70-79.	1.0	2
153	Applying MOEAs to solve the static Routing and Wavelength Assignment problem in optical WDM networks. Engineering Applications of Artificial Intelligence, 2013, 26, 1602-1619.	4.3	16
154	A parallel cooperative team of multiobjective evolutionary algorithms for motif discovery. Journal of Supercomputing, 2013, 66, 1576-1612.	2.4	2
155	Analysing the scalability of multiobjective evolutionary algorithms when solving the motif discovery problem. Journal of Global Optimization, 2013, 57, 467-497.	1.1	4
156	A multiobjective swarm intelligence approach based on artificial bee colony for reliable DNA sequence design. Engineering Applications of Artificial Intelligence, 2013, 26, 2045-2057.	4.3	29
157	Meta-schedulers for grid computing based on multi-objective swarm algorithms. Applied Soft Computing Journal, 2013, 13, 1567-1582.	4.1	12
158	Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery. Engineering Applications of Artificial Intelligence, 2013, 26, 314-326.	4.3	13
159	Swarm optimisation algorithms applied to large balanced communication networks. Journal of Network and Computer Applications, 2013, 36, 504-522.	5.8	9
160	Designing a novel hybrid swarm based multiobjective evolutionary algorithm for finding DNA motifs. , 2013, , .		1
161	A comparative study on distance methods applied to a multiobjective firefly algorithm for phylogenetic inference. , 2013, , .		4
162	A parallel evolutionary approach to solve the relay node placement problem in wireless sensor		12

networks., 2013,,.

#	Article	IF	CITATIONS
163	DNA base-code generation for reliable computing by using standard multi-objective evolutionary algorithms. , 2013, , .		0
164	Theory and Practice of Natural Computing. Lecture Notes in Computer Science, 2013, , .	1.0	1
165	LOW POWER CONSUMPTION SECURITY PLATFORM FOR INDUSTRIAL COMMUNICATIONS USING AN MPSOC. Journal of Circuits, Systems and Computers, 2013, 22, 1350029.	1.0	2
166	Stellarator optimization under several criteria using metaheuristics. Plasma Physics and Controlled Fusion, 2013, 55, 014003.	0.9	6
167	Parallelizing a multiobjective swarm intelligence approach to phylogenetics using hybrid MPI/OpenMP schemes. , 2013, , .		0
168	Parallelizing a hybrid multiobjective differential evolution for identifying cis-regulatory elements. , 2013, , .		1
169	Hybrid Multiobjective Artificial Bee Colony with Differential Evolution Applied to Motif Finding. Lecture Notes in Computer Science, 2013, , 68-79.	1.0	3
170	Simulated Annealing for Real-Time Vertical-Handoff in Wireless Networks. Lecture Notes in Computer Science, 2013, , 198-209.	1.0	6
171	Concurrent CPU-GPU Code Optimization: The Two-Point Angular Correlation Function as Case Study. Lecture Notes in Computer Science, 2013, , 209-218.	1.0	7
172	A Trajectory Algorithm to Solve the Relay Node Placement Problem in Wireless Sensor Networks. Lecture Notes in Computer Science, 2013, , 145-156.	1.0	1
173	A Multiobjective SFLA-Based Technique for Predicting Motifs in DNA Sequences. Lecture Notes in Computer Science, 2013, , 235-242.	1.0	1
174	Metaoptimization of Differential Evolution by Using Productions of Low-Number of Cycles: The Fitting of Rotation Curves of Spiral Galaxies as Case Study. Lecture Notes in Computer Science, 2013, , 356-365.	1.0	1
175	The Artificial Bee Colony Algorithm Applied to a Self-adaptive Grid Resources Selection Model. Lecture Notes in Computer Science, 2013, , 366-375.	1.0	0
176	Optimizing the Location Areas Planning in the SUMATRA Network with an Adaptation of the SPEA2 Algorithm. Lecture Notes in Computer Science, 2013, , 243-250.	1.0	1
177	A New Version of the Multiobjective Artificial Bee Colony Algorithm for Optimizing the Location Areas Planning in a Realistic Network. Lecture Notes in Computer Science, 2013, , 19-30.	1.0	0
178	Solving the reporting cells problem by using a parallel team of evolutionary algorithms. Logic Journal of the IGPL, 2012, 20, 722-731.	1.3	10
179	Fast Decision Algorithms in Low-Power Embedded Processors for Quality-of-Service Based Connectivity of Mobile Sensors in Heterogeneous Wireless Sensor Networks. Sensors, 2012, 12, 1612-1624.	2.1	6
180	Advances in Sensors-Centric Microprocessors and System-on-Chip. Sensors, 2012, 12, 4820-4823.	2.1	0

#	Article	IF	CITATIONS
181	DNA sequence design for reliable DNA computing by using a multiobjective approach. , 2012, , .		3
182	Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks. International Journal of Computational Intelligence Systems, 2012, 5, 745.	1.6	0
183	Inferring Phylogenetic Trees Using a Multiobjective Artificial Bee Colony Algorithm. Lecture Notes in Computer Science, 2012, , 144-155.	1.0	2
184	Multiobjective metaheuristics for frequency assignment problem in mobile networks with largeâ€scale realâ€world instances. Engineering Computations, 2012, 29, 144-172.	0.7	14
185	Multiobjective Teaching-Learning-Based Optimization (MO-TLBO) for motif finding. , 2012, , .		11
186	Solving the Location Areas problem with Strength Pareto Evolutionary Algorithm. , 2012, , .		7
187	A Parallel Multiobjective Artificial Bee Colony Algorithm for Dealing with the Traffic Grooming Problem. , 2012, , .		3
188	Multi-objective evolutionary algorithms for energy-efficiency in heterogeneous wireless sensor networks. , 2012, , .		2
189	Evaluating the Performance of a Parallel Multiobjective Artificial Bee Colony Algorithm for Inferring Phylogenies on Multicore Architectures. , 2012, , .		2
190	Multiobjective Optimization Comparison - MOSWO vs MOGSA - for Solving the Job Scheduling Problem in Grid Environments. , 2012, , .		1
191	Multi-objective Firefly Algorithm for Energy Optimization in Grid Environments. Lecture Notes in Computer Science, 2012, , 350-351.	1.0	10
192	Comparing Different Operators and Models to Improve a Multiobjective Artificial Bee Colony Algorithm for Inferring Phylogenies. Lecture Notes in Computer Science, 2012, , 187-200.	1.0	2
193	Predicting DNA Motifs by Using Evolutionary Multiobjective Optimization. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2012, 42, 913-925.	3.3	17
194	Solving large-scale SONET network design problems using bee-inspired algorithms. Optical Switching and Networking, 2012, 9, 97-117.	1.2	6
195	A Parallel Multi-Core Team of Multiobjective Evolutionary Algorithms to Discover DNA Motifs. , 2012, ,		1
196	MO-ABC/DE - Multiobjective Artificial Bee Colony with Differential Evolution for unconstrained multiobjective optimization. , 2012, , .		5
197	Dual MicroBlaze rekeying processor for group key management. , 2012, , .		0
198	A Comparative Study on Multiobjective Swarm Intelligence for the Routing and Wavelength Assignment Problem. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2012, 42, 1644-1655.	3.3	25

#	Article	IF	CITATIONS
199	Relay Node Positioning in Wireless Sensor Networks by Means of Evolutionary Techniques. Lecture Notes in Computer Science, 2012, , 18-25.	1.0	4
200	High-Speed Reconfigurable Parallel System to Design Good Error Correcting Codes in Communications. Journal of Signal Processing Systems, 2012, 66, 147-152.	1.4	3
201	Solving SONET Problems Using a Hybrid Scatter Search Algorithm. Studies in Computational Intelligence, 2012, , 81-97.	0.7	3
202	GPU-Based Evaluation to Accelerate Particle Swarm Algorithm. Lecture Notes in Computer Science, 2012, , 272-279.	1.0	3
203	Comparing Multiobjective Artificial Bee Colony Adaptations for Discovering DNA Motifs. Lecture Notes in Computer Science, 2012, , 110-121.	1.0	3
204	Optimizing Energy Consumption in Heterogeneous Wireless Sensor Networks by Means of Evolutionary Algorithms. Lecture Notes in Computer Science, 2012, , 1-10.	1.0	1
205	Small-World Optimization Applied to Job Scheduling on Grid Environments from a Multi-Objective Perspective. Lecture Notes in Computer Science, 2012, , 42-51.	1.0	1
206	A Multi-objective Approach to Solve the Location Areas Problem. Lecture Notes in Computer Science, 2012, , 72-83.	1.0	2
207	Nature-Inspired Algorithms Applied to an Efficient and Self-adaptive Resources Selection Model for Grid Applications. Lecture Notes in Computer Science, 2012, , 84-96.	1.0	3
208	Real-World Problem for Checking the Sensitiveness of Evolutionary Algorithms to the Choice of the Random Number Generator. Lecture Notes in Computer Science, 2012, , 385-396.	1.0	1
209	Using a Multiobjective OpenMP+MPI DE for the Static RWA Problem. Lecture Notes in Computer Science, 2012, , 224-231.	1.0	0
210	Discovering DNA Motifs with a Parallel Shared Memory Differential Evolution. Lecture Notes in Computer Science, 2012, , 232-239.	1.0	0
211	A multi-objective network design for real traffic models of the internet by means of a parallel framework for solving NP-hard problems. , 2011, , .		3
212	COMPARATIVE ANALYSIS OF A HYBRID DE ALGORITHM WITH THE VNS ALGORITHM AND ITS VARIATION SVNS TO SOLVE A REAL-WORLD FREQUENCY ASSIGNMENT PROBLEM. Applied Artificial Intelligence, 2011, 25, 217-234.	2.0	3
213	Artificial Bee Colony Algorithm applied to WiMAX network planning problem. , 2011, , .		11
214	Multi-Objective Artificial Bee Colony for scheduling in Grid environments. , 2011, , .		12
215	On the scalability of multi-objective metaheuristics for the software scheduling problem. , 2011, , .		7
216	Evaluation of multiobjective swarm algorithms for grid scheduling. , 2011, , .		0

#	Article	IF	CITATIONS
217	Solving ring loading problems using bio-inspired algorithms. Journal of Network and Computer Applications, 2011, 34, 668-685.	5.8	13
218	Using a hybrid honey bees mating optimisation algorithm for solving SONET/SDH design problems. , 2011, , .		1
219	Genetic and local search algorithms applied to balanced communication networks. , 2011, , .		Ο
220	Accelerating floating-point fitness functions in evolutionary algorithms: a FPGA-CPU-GPU performance comparison. Genetic Programming and Evolvable Machines, 2011, 12, 403-427.	1.5	15
221	Optimization algorithms for large-scale real-world instances of the frequency assignment problem. Soft Computing, 2011, 15, 975-990.	2.1	31
222	Automatic texture characterization using Gabor filters and neurofuzzy computing. International Journal of Advanced Manufacturing Technology, 2011, 52, 15-32.	1.5	5
223	Differential evolution for solving the mobile location management. Applied Soft Computing Journal, 2011, 11, 410-427.	4.1	38
224	A Multiobjective Gravitational Search Algorithm Applied to the Static Routing and Wavelength Assignment Problem. Lecture Notes in Computer Science, 2011, , 41-50.	1.0	6
225	Accelerating Particle Swarm Algorithm with GPGPU. , 2011, , .		12
226	Optimizing a realistic large-scale frequency assignment problem using a new parallel evolutionary approach. Engineering Optimization, 2011, 43, 813-842.	1.5	6
227	Applying a Multiobjective Gravitational Search Algorithm (MO-GSA) to Discover Motifs. Lecture Notes in Computer Science, 2011, , 372-379.	1.0	13
228	Efficient Load Balancing Using the Bees Algorithm. Lecture Notes in Computer Science, 2011, , 469-479.	1.0	0
229	Distributed and Asynchronous Bees Algorithm Applied to Nuclear Fusion Research. , 2011, , .		0
230	Distributed Bees Foraging-Based Algorithm for Large-Scale Problems. , 2011, , .		2
231	Effect of the Block Occupancy in GPGPU over the Performance of Particle Swarm Algorithm. Lecture Notes in Computer Science, 2011, , 310-319.	1.0	4
232	Sensitiveness of Evolutionary Algorithms to the Random Number Generator. Lecture Notes in Computer Science, 2011, , 371-380.	1.0	10
233	Finding Motifs in DNA Sequences Applying a Multiobjective Artificial Bee Colony (MOABC) Algorithm. Lecture Notes in Computer Science, 2011, , 89-100.	1.0	18
234	Self-Adaptive Deployment of Parametric Sweep Applications through a Complex Networks Perspective. Lecture Notes in Computer Science, 2011, , 475-489.	1.0	4

#	Article	IF	CITATIONS
235	Gridâ€based metaheuristics to improve a nuclear fusion device. Concurrency Computation Practice and Experience, 2010, 22, 1476-1493.	1.4	4
236	Tuning the PBIL algorithm to solve a real-world FAP problem. International Journal of Reasoning-based Intelligent Systems, 2010, 2, 2.	0.1	2
237	AlineaGA—a genetic algorithm with local search optimization forÂmultiple sequence alignment. Applied Intelligence, 2010, 32, 164-172.	3.3	32
238	Improving the industrial classification of cork stoppers by using image processing and Neuro-Fuzzy computing. Journal of Intelligent Manufacturing, 2010, 21, 745-760.	4.4	12
239	Detecting skin in face recognition systems: A colour spaces study. , 2010, 20, 806-823.		166
240	A new methodology to implement the AES algorithm using partial and dynamic reconfiguration. The Integration VLSI Journal, 2010, 43, 72-80.	1.3	82
241	A Hybrid Scatter Search algorithm to assign terminals to concentrators. , 2010, , .		2
242	A Hybrid Population-Based Incremental Learning algorithm for load balancing in RPR. , 2010, , .		0
243	An evolutionary approach for performing multiple sequence alignment. , 2010, , .		7
244	Solving the Routing and Wavelength Assignment Problem in WDM Networks by Using a Multiobjective Variable Neighborhood Search Algorithm. Advances in Intelligent and Soft Computing, 2010, , 47-54.	0.2	7
245	Solving the motif discovery problem by using Differential Evolution with Pareto Tournaments. , 2010, , .		13
246	A Differential Evolution with Pareto Tournaments for solving the Routing and Wavelength Assignment problem in WDM networks. , 2010, , .		13
247	Hybrid Honey Bees Mating Optimisation algorithm to assign terminals to concentrators. , 2010, , .		0
248	Artificial Bee Colony Inspired Algorithm Applied to Fusion Research in a Grid Computing Environment. , 2010, , .		13
249	Empirical Study of Performance of Particle Swarm Optimization Algorithms Using Grid Computing. Studies in Computational Intelligence, 2010, , 345-357.	0.7	4
250	A Hybrid Ant Colony Optimization Algorithm for Solving the Ring Arc-Loading Problem. Lecture Notes in Computer Science, 2010, , 49-59.	1.0	3
251	Application of Differential Evolution to a Multi-Objective Real-World Frequency Assignment Problem. Adaptation, Learning, and Optimization, 2010, , 155-176.	0.5	2
252	Using the Bees Algorithm to Assign Terminals to Concentrators. Lecture Notes in Computer Science, 2010, , 267-276.	1.0	5

#	Article	IF	CITATIONS
253	A Parallel Cooperative Evolutionary Strategy for Solving the Reporting Cells Problem. Advances in Intelligent and Soft Computing, 2010, , 71-78.	0.2	1
254	A Multiobjective Variable Neighborhood Search for Solving the Motif Discovery Problem. Advances in Intelligent and Soft Computing, 2010, , 39-46.	0.2	6
255	Solving the Reporting Cells Problem Using a Scatter Search Based Algorithm. Lecture Notes in Computer Science, 2010, , 534-543.	1.0	9
256	Using a Parallel Team of Multiobjective Evolutionary Algorithms to Solve the Motif Discovery Problem. Advances in Intelligent and Soft Computing, 2010, , 569-576.	0.2	2
257	Improving Optical WDM Networks by Using a Multi-core Version of Differential Evolution with Pareto Tournaments. Advances in Intelligent and Soft Computing, 2010, , 629-636.	0.2	2
258	Discrete Differential Evolution Algorithm for Solving the Terminal Assignment Problem. , 2010, , 229-239.		6
259	Performance Improvement in Multipopulation Particle Swarm Algorithm. Advances in Intelligent and Soft Computing, 2010, , 533-540.	0.2	0
260	Scatter Search and Grid Computing to Improve Nuclear Fusion Devices. Lecture Notes in Computer Science, 2010, , 483-490.	1.0	0
261	Distributed and Asynchronous Bees Algorithm: An Efficient Model for Large Scale Problems Optimizations. Advances in Intelligent and Soft Computing, 2010, , 381-388.	0.2	1
262	A Discrete Differential Evolution Algorithm for Solving the Weighted Ring Arc Loading Problem. Lecture Notes in Computer Science, 2010, , 153-163.	1.0	2
263	Solving a Realistic Location Area Problem Using SUMATRA Networks with the Scatter Search Algorithm. , 2009, , .		4
264	PARALLEL AND RUNTIME RECONFIGURABLE IMPLEMENTATION OF THE IDEA ALGORITHM. Journal of Circuits, Systems and Computers, 2009, 18, 133-150.	1.0	1
265	Evolutionary computation and grid computing to optimise nuclear fusion devices. Cluster Computing, 2009, 12, 439-448.	3.5	4
266	IDEA and AES, two cryptographic algorithms implemented using partial and dynamic reconfiguration. Microelectronics Journal, 2009, 40, 1032-1040.	1.1	10
267	Benchmarking a Wide Spectrum of Metaheuristic Techniques for the Radio Network Design Problem. IEEE Transactions on Evolutionary Computation, 2009, 13, 1133-1150.	7.5	29
268	Perceptually Relevant Pattern Recognition Applied to Cork Quality Detection. Lecture Notes in Computer Science, 2009, , 927-936.	1.0	0
269	Multiobjective frequency assignment problem using the MO-VNS and MO-SVNS algorithms. , 2009, , .		7
270	Exploration of the Conjecture of Bateman Using Particle Swarm Optimisation and Grid Computing. , 2009, , .		1

16

#	Article	IF	CITATIONS
271	Optimizing Multiple Sequence Alignment by Improving Mutation Operators of a Genetic Algorithm. , 2009, , .		5
272	GRASP and grid computing to solve the location area problem. , 2009, , .		2
273	The Radio Network Design Optimization Problem. Studies in Computational Intelligence, 2009, , 219-260.	0.7	3
274	Solving the weighted ring edge-loading problem without demand splitting using a Hybrid Differential Evolution Algorithm. , 2009, , .		4
275	Performance Analysis of Reconfigurable Clusters to Design Good Error Correcting Codes in Communications. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 125-130.	0.4	1
276	Solving the Terminal Assignment Problem Using a Local Search Genetic Algorithm. Advances in Soft Computing, 2009, , 225-234.	0.4	4
277	Solving the Ring Loading Problem Using Genetic Algorithms with Intelligent Multiple Operators. Advances in Soft Computing, 2009, , 235-244.	0.4	4
278	Optimizing the DFCN Broadcast Protocol with a Parallel Cooperative Strategy of Multi-Objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2009, , 305-319.	1.0	6
279	Solving a Realistic FAP Using GRASP and Grid Computing. Lecture Notes in Computer Science, 2009, , 79-90.	1.0	3
280	A Hybrid Differential Evolution Algorithm for Solving the Terminal Assignment Problem. Lecture Notes in Computer Science, 2009, , 179-186.	1.0	4
281	Parameter Analysis for Differential Evolution with Pareto Tournaments in a Multiobjective Frequency Assignment Problem. Lecture Notes in Computer Science, 2009, , 799-806.	1.0	4
282	Solving a Real–World FAP Using the Scatter Search Metaheuristic. Lecture Notes in Computer Science, 2009, , 785-792.	1.0	1
283	Grid-Oriented Scatter Search Algorithm. Lecture Notes in Computer Science, 2009, , 193-202.	1.0	6
284	Grid-Enabled Mutation-Based Genetic Algorithm to Optimise Nuclear Fusion Devices. Lecture Notes in Computer Science, 2009, , 809-816.	1.0	3
285	Applying Scatter Search to the Location Areas Problem. Lecture Notes in Computer Science, 2009, , 791-798.	1.0	5
286	A hybrid Differential Evolution algorithm to solve a real-world Frequency Assignment problem. Proceedings of the International Multiconference on Computer Science and Information Technology, 2008, , .	0.0	15
287	Analysis of Parameter Settings for Differential Evolution Algorithm to Solve a Real-World Frequency Assignment Problem in GSM Networks. , 2008, , .		9
288	A FPGA Optimization Tool Based on a Multi-island Genetic Algorithm Distributed over Grid		8

Environments. , 2008, , .

#	Article	IF	CITATIONS
289	Applying Differential Evolution to the Reporting Cells problem. Proceedings of the International Multiconference on Computer Science and Information Technology, 2008, , .	0.0	11
290	Parallelizing PBIL for Solving a Real-World Frequency Assignment Problem in GSM Networks. , 2008, , .		7
291	Population-Based Incremental Learning to Solve the FAP Problem. , 2008, , .		2
292	Using a Genetic Algorithm and the Grid to Improve Transport Levels in the TJ-II Stellarator. , 2008, , .		5
293	Studying Different Variants of PBIL to Solve a Real-World FAP Problem in GSM Networks. , 2008, , .		2
294	Applying Differential Evolution to a Realistic Location Area Problem Using SUMATRA. , 2008, , .		5
295	Grid Computing in Order to Implement a Three-Dimensional Magnetohydrodynamic Equilibrium Solver for Plasma Confinement. , 2008, , .		9
296	Can fuzzy logic improve the cork quality classification? A comparative study. , 2008, , .		0
297	Metaheuristics for solving a real-world frequency assignment problem in GSM networks. , 2008, , .		22
298	Custom Hardware Processor to Compute a Figure of Merit for the Fit of X-Ray Diffraction Peaks. X-Ray Optics and Instrumentation, 2008, 2008, 1-7.	0.7	2
299	A Genetic Algorithm with Multiple Operators for Solving the Terminal Assignment Problem. Studies in Computational Intelligence, 2008, , 279-288.	0.7	3
300	Comparing Hybrid Versions of SS and DE to Solve a Realistic FAP Problem. Lecture Notes in Computer Science, 2008, , 257-264.	1.0	3
301	Peaks Detection in X-Ray Diffraction Profiles Using Grid Computing. Lecture Notes in Computer Science, 2008, , 793-801.	1.0	0
302	Finding The Best Classifier for Evaluating Cork Quality In An Industrial Environment. , 2008, , 183-194.		0
303	3D Textural Mapping and Soft-Computing Applied to Cork Quality Inspection. Lecture Notes in Computer Science, 2008, , 743-752.	1.0	0
304	Game Implementation: An Interesting Strategy to Teach Genetic Algorithms. , 2007, , 205-223.		1
305	Advanced Texture Analysis in Cork Quality Detection. Industrial Informatics, 2009 INDIN 2009 7th IEEE International Conference on, 2007, , .	0.0	3
306	Evaluation of Different Metaheuristics Solving the RND Problem. , 2007, , 101-110.		14

#	Article	IF	CITATIONS
307	Computers and Education. , 2007, , .		9
308	A differential evolution algorithm for location area problem in mobile networks. , 2007, , .		5
309	Fast Wide Area Network Design Optimisation Using Differential Evolution. , 2007, , .		6
310	Image Processing and Neuro-Fuzzy Computing for Cork Quality Classification. , 2007, , .		1
311	Reconfigurable computing system for image processing via the internet. Microprocessors and Microsystems, 2007, 31, 498-515.	1.8	6
312	Solving the frequency assignment problem with differential evolution. , 2007, , .		2
313	Radio Network Design Using Population-Based Incremental Learning and Grid Computing with BOINC. , 2007, , 91-100.		6
314	Using Omnidirectional BTS and Different Evolutionary Approaches to Solve the RND Problem. , 2007, , 853-860.		8
315	Volunteer Computing, an Interesting Option for Grid Computing: Extremadura as Case Study. Lecture Notes in Computer Science, 2007, , 29-30.	1.0	0
316	Hardware Modelling of Cellular Automata: The Game of Life Case. , 2007, , 589-595.		1
317	Tele-Education of the Instruction Dynamic Scheduling Using a Web Simulator. , 2007, , 89-98.		0
318	Using FPGAs to Implement Artificial Neural Networks. , 2006, , .		8
319	Placement and routing of Boolean functions in constrained FPGAs using a distributed genetic algorithm and local search. , 2006, , .		1
320	A Differential Evolution Based Algorithm to Optimize the Radio Network Design Problem. , 2006, , .		8
321	Reconfigurable Computing and Parallelism for Implementing and Accelerating Evolutionary Algorithms. Studies in Computational Intelligence, 2006, , 71-93.	0.7	2
322	FPGA design and implementation of a fast pixel purity index algorithm for endmember extraction in hyperspectral imagery. , 2005, 5995, 69.		10
323	Parametric identification of solar series based on an adaptive parallel methodology. Journal of Astrophysics and Astronomy, 2005, 26, 103-115.	0.4	1
324	Guest editors' introduction—Special issue on FPGAs: applications and designs. Microprocessors and Microsystems, 2004, 28, 193-195.	1.8	15

#	Article	IF	CITATIONS
325	An educational tool for testing caches on symmetric multiprocessors. Microprocessors and Microsystems, 2001, 25, 187-194.	1.8	9
326	Cork stopper classification using FPGAs and digital image processing techniques. , 0, , .		1
327	Genetic Algorithms Using Parallelism and FPGAs: The TSP as Case Study. , 0, , .		18