
Sarah Costantino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3833928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ageing, metabolism and cardiovascular disease. Journal of Physiology, 2016, 594, 2061-2073.	1.3	311
2	Adverse Epigenetic Signatures by Histone Methyltransferase Set7 Contribute to Vascular Dysfunction in Patients With Type 2 Diabetes Mellitus. Circulation: Cardiovascular Genetics, 2015, 8, 150-158.	5.1	141
3	Impact of Glycemic Variability on Chromatin Remodeling, Oxidative Stress, and Endothelial Dysfunction in Patients With Type 2 Diabetes and With Target HbA1c Levels. Diabetes, 2017, 66, 2472-2482.	0.3	139
4	MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. European Heart Journal, 2016, 37, 572-576.	1.0	136
5	Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. European Heart Journal, 2018, 39, 4150-4158.	1.0	79
6	Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes. European Heart Journal, 2015, 36, 817-828.	1.0	75
7	Obesity-induced activation of JunD promotes myocardial lipid accumulation and metabolic cardiomyopathy. European Heart Journal, 2019, 40, 997-1008.	1.0	69
8	The elevation of circulating fibroblast growth factor 23 without kidney disease does not increaseÂcardiovascular disease risk. Kidney International, 2018, 94, 49-59.	2.6	62
9	Endothelial SIRT6 blunts stroke size and neurological deficit by preserving blood–brain barrier integrity: a translational study. European Heart Journal, 2020, 41, 1575-1587.	1.0	54
10	Role of oxidative stress in endothelial insulin resistance. World Journal of Diabetes, 2015, 6, 326.	1.3	51
11	Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66Shc. International Journal of Cardiology, 2018, 268, 179-186.	0.8	47
12	Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. European Heart Journal, 2019, 40, 383-391.	1.0	45
13	Epigenetic processing in cardiometabolic disease. Atherosclerosis, 2019, 281, 150-158.	0.4	44
14	Molecular pathways of arterial aging. Clinical Science, 2015, 128, 69-79.	1.8	42
15	Inflammation in Metabolic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2021, 8, 742178.	1.1	42
16	Epigenetics and cardiovascular regenerative medicine in the elderly. International Journal of Cardiology, 2018, 250, 207-214.	0.8	41
17	Pin1 inhibitor Juglone prevents diabetic vascular dysfunction. International Journal of Cardiology, 2016, 203, 702-707.	0.8	39
18	Epigenetic Control of Mitochondrial Function in the Vasculature. Frontiers in Cardiovascular Medicine, 2020, 7, 28.	1.1	39

SARAH COSTANTINO

#	Article	IF	CITATIONS
19	Hyperglycemia Induces Myocardial Dysfunction via Epigenetic Regulation of JunD. Circulation Research, 2020, 127, 1261-1273.	2.0	38
20	Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. European Heart Journal, 2021, 42, 1940-1958.	1.0	34
21	p66Shc-induced redox changes drive endothelial insulin resistance. Atherosclerosis, 2014, 236, 426-429.	0.4	31
22	Molecular mechanisms of vascular dysfunction and cardiovascular biomarkers in type 2 diabetes. Cardiovascular Diagnosis and Therapy, 2014, 4, 324-32.	0.7	30
23	Reprogramming ageing and longevity genes restores paracrine angiogenic properties of early outgrowth cells. European Heart Journal, 2016, 37, 1733-1737.	1.0	27
24	Endothelial LOX-1 activation differentially regulates arterial thrombus formation depending on oxLDL levels: role of the Oct-1/SIRT1 and ERK1/2 pathways. Cardiovascular Research, 2017, 113, 498-507.	1.8	27
25	Sirt6 deletion in bone marrow-derived cells increases atherosclerosis – Central role of macrophage scavenger receptor 1. Journal of Molecular and Cellular Cardiology, 2020, 139, 24-32.	0.9	26
26	Epigenetic modulation of tenascin C in the heart. Journal of Hypertension, 2019, 37, 1861-1870.	0.3	19
27	Epigenetic Remodeling in Obesity-Related Vascular Disease. Antioxidants and Redox Signaling, 2021, 34, 1165-1199.	2.5	19
28	Hyperglycemia: a bad signature on the vascular system. Cardiovascular Diagnosis and Therapy, 2015, 5, 403-6.	0.7	17
29	Epi-Drugs in Heart Failure. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	17
30	The BET Protein Inhibitor Apabetalone Rescues Diabetes-Induced Impairment of Angiogenic Response by Epigenetic Regulation of Thrombospondin-1. Antioxidants and Redox Signaling, 2022, 36, 667-684.	2.5	15
31	MMP-2 knockdown blunts age-dependent carotid stiffness by decreasing elastin degradation and augmenting eNOS activation. Cardiovascular Research, 2022, 118, 2385-2396.	1.8	14
32	Cardiomyocyte-Specific JunD Overexpression Increases Infarct Size following Ischemia/Reperfusion Cardiac Injury by Downregulating Sirt3. Thrombosis and Haemostasis, 2020, 120, 168-180.	1.8	13
33	Sirtuin 5 promotes arterial thrombosis by blunting the fibrinolytic system. Cardiovascular Research, 2021, 117, 2275-2288.	1.8	13
34	New Mechanisms of Vascular Dysfunction in Cardiometabolic Patients: Focus on Epigenetics. High Blood Pressure and Cardiovascular Prevention, 2020, 27, 363-371.	1.0	12
35	Atrial fibrillation in the cardiometabolic patient. Minerva Medica, 2019, 110, 157-167.	0.3	12
36	Regression of left ventricular hypertrophy with SGLT2 inhibitors. European Heart Journal, 2020, 41, 3433-3436.	1.0	11

SARAH COSTANTINO

#	Article	IF	CITATIONS
37	Methylation of the Hippo effector YAP by the methyltransferase SETD7 drives myocardial ischaemic injury: a translational study. Cardiovascular Research, 2023, 118, 3374-3385.	1.8	10
38	PCSK9 in diabetes: sweet, bitter or sour?. European Heart Journal, 2019, 40, 369-371.	1.0	8
39	GLP-1-based therapies to boost autophagy in cardiometabolic patients: From experimental evidence to clinical trials. Vascular Pharmacology, 2019, 115, 64-68.	1.0	6
40	Disentangling the epigenetic landscape in cardiovascular patients: a path toward personalized medicine. Minerva Cardiology and Angiology, 2021, 69, 331-345.	0.4	6
41	The vascular epigenome in patients with obesity and type 2 diabetes: opportunities for personalized therapies. Vascular Biology (Bristol, England), 2020, 2, H19-H28.	1.2	6
42	The Epigenome in Atherosclerosis. Handbook of Experimental Pharmacology, 2020, , 511-535.	0.9	5
43	Diabetes and cardiovascular disease: let's push forward with translational research. Cardiovascular Diagnosis and Therapy, 2015, 5, 407-11.	0.7	4
44	Tackling myocardial oxidative stress with empagliflozin: are we big enough to fight heart failure with preserved ejection fraction?. Cardiovascular Research, 2021, 117, 343-345.	1.8	3
45	Stem cell therapy in heart failure: Is the best yet to come?. International Journal of Cardiology, 2018, 260, 135-136.	0.8	2
46	Sex-related differences in the ageing brain: time for precision medicine?. Cardiovascular Research, 2020, 116, 1246-1248.	1.8	2
47	Obesity-induced impairment of pluripotent stem cells: novel insights into vascular repair strategies. European Heart Journal, 2019, 40, e11-e13.	1.0	1
48	MicroRNA-122 in heart failure with reduced ejection fraction: Epiphenomenon or causal?. International Journal of Cardiology, 2020, 303, 66-67.	0.8	1
49	Authors' reply to Dr. Schmitz and Dr. Brand comments on "Epigenetics and Cardiovascular Regenerative Medicine in the Elderly†International Journal of Cardiology, 2018, 257, 274.	0.8	0