Christine Mousty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3833688/publications.pdf

Version: 2024-02-01

87 papers

4,117 citations

94433 37 h-index 62 g-index

90 all docs 90 docs citations

90 times ranked 4294 citing authors

#	Article	IF	CITATIONS
1	Subnanomolar Cyanide Detection at Polyphenol Oxidase/Clay Biosensors. Analytical Chemistry, 2004, 76, 178-183.	6.5	316
2	Assessment of the Fe(III)–EDDS Complex in Fenton-Like Processes: From the Radical Formation to the Degradation of Bisphenol A. Environmental Science & Technology, 2013, 47, 1952-1959.	10.0	310
3	Tailoring Hybrid Layered Double Hydroxides for the Development of Innovative Applications. Advanced Functional Materials, 2018, 28, 1703868.	14.9	205
4	Layered Double Hydroxides:Â An Attractive Material for Electrochemical Biosensor Design. Analytical Chemistry, 2003, 75, 3872-3879.	6.5	198
5	Biosensing applications of clay-modified electrodes: a review. Analytical and Bioanalytical Chemistry, 2010, 396, 315-325.	3.7	142
6	Highâ€Performing Monometallic Cobalt Layered Double Hydroxide Supercapacitor with Defined Local Structure. Advanced Functional Materials, 2014, 24, 4831-4842.	14.9	137
7	Urea Biosensors Based on Immobilization of Urease into Two Oppositely Charged Clays (Laponite and) Tj ETQq1 1	0.784314 6.5	⊦rgBT /Over
8	Anion-exchanging clay-modified electrodes: synthetic layered double hydroxides intercalated with electroactive organic anions. Journal of Electroanalytical Chemistry, 1994, 374, 63-69.	3.8	92
9	Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films. Analytica Chimica Acta, 2009, 654, 97-102.	5.4	88
10	Laccase immobilization in redox active layered double hydroxides: A reagentless amperometric biosensor. Biosensors and Bioelectronics, 2007, 22, 1733-1738.	10.1	86
11	Specific Determination of As(V) by an Acid Phosphataseâ°'Polyphenol Oxidase Biosensor. Analytical Chemistry, 2006, 78, 4985-4989.	6.5	85
12	Hybrid and biohybrid layered double hydroxides for electrochemical analysis. Analytical and Bioanalytical Chemistry, 2013, 405, 3513-3523.	3.7	84
13	Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. Electrochemistry Communications, 2007, 9, 2240-2245.	4.7	80
14	Nanohybrid Enzymes - Layered Double Hydroxides: Potential Applications. Current Nanoscience, 2006, 2, 283-294.	1.2	80
15	HRP/[Zn–Cr–ABTS] redox clay-based biosensor: design and optimization for cyanide detection. Biosensors and Bioelectronics, 2004, 20, 390-396.	10.1	78
16	Mercuryâ€"enzyme inhibition assays with an amperometric sucrose biosensor based on a trienzymatic-clay matrix. Analytica Chimica Acta, 2005, 543, 143-149.	5.4	72
17	Design of Laccase–Metal Organic Framework-Based Bioelectrodes for Biocatalytic Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 20012-20022.	8.0	72
18	Trienzymatic biosensor for the determination of inorganic phosphate. Analytica Chimica Acta, 2001, 443, 1-8.	5.4	68

#	Article	IF	CITATION
19	Entrapment of enzyme within organic and inorganic materials for biosensor applications: Comparative study. Materials Science and Engineering C, 2006, 26, 442-447.	7.3	66
20	Alkaline phosphatase biosensors based on layered double hydroxides matrices: Role of LDH composition. Sensors and Actuators B: Chemical, 2008, 133, 442-448.	7.8	53
21	A composite poly azure B–clay–enzyme sensor for the mediated electrochemical determination of phenols. Journal of Electroanalytical Chemistry, 2002, 537, 103-109.	3.8	49
22	A New Polyphenol Oxidase Biosensor Mediated by Azure B in Laponite Clay Matrix. Electroanalysis, 2003, 15, 1506-1512.	2.9	49
23	Biotinylated alginate immobilization matrix in the construction of an amperometric biosensor: application for the determination of glucose. Analytica Chimica Acta, 2002, 453, 71-79.	5.4	48
24	Characterization of Hemoglobin Immobilized in MgAl-Layered Double Hydroxides by the Coprecipitation Method. Langmuir, 2010, 26, 9997-10004.	3.5	48
25	Recent trends in electrochemical detection of phosphate in actual waters. Current Opinion in Electrochemistry, 2018, 11, 55-61.	4.8	47
26	Electrochemical determination of mesotrione at organoclay modified glassy carbon electrodes. Talanta, 2013, 103, 337-343.	5 . 5	46
27	Interactions between Biological Cells and Layered Double Hydroxides: Towards Functional Materials. Chemical Record, 2018, 18, 1150-1166.	5.8	46
28	Electrodes modified with synthetic anionic clays. Applied Clay Science, 1995, 10, 147-162.	5.2	44
29	Elaboration and Characterization of Spatially Controlled Assemblies of Complementary Polyphenol Oxidaseâ^'Alkaline Phosphatase Activities on Electrodes. Analytical Chemistry, 2001, 73, 2890-2897.	6.5	44
30	Electrogeneration of a Hydrophilic Cross-Linked Polypyrrole Film for Enzyme Electrode Fabrication. Application to the Amperometric Detection of Glucose. Electroanalysis, 2001, 13, 186-190.	2.9	44
31	HRP Wiring by Redox Active Layered Double Hydroxides: Application to the Mediated H2O2Detection. Analytical Letters, 2003, 36, 909-922.	1.8	42
32	Spongy gel-like layered double hydroxide–alkaline phosphatase nanohybrid as a biosensing material. Chemical Communications, 2008, , 1554.	4.1	41
33	Laccase electrodes based on the combination of single-walled carbon nanotubes and redox layered double hydroxides: Towards the development of biocathode for biofuel cells. Journal of Power Sources, 2010, 195, 4714-4717.	7.8	41
34	LDHs as Electrode Materials for Electrochemical Detection and Energy Storage: Supercapacitor, Battery and (Bio)-Sensor. Recent Patents on Nanotechnology, 2012, 6, 174-192.	1.3	40
35	Hybrid layered double hydroxides-polypyrrole composites for construction of glucose/O2 biofuel cell. Electrochimica Acta, 2011, 56, 10378-10384.	5.2	39
36	Insights into the electrochemistry of (CoxNi(1â^'x))2Alâ€"NO3 Layered Double Hydroxides. Electrochimica Acta, 2013, 107, 599-610.	5.2	39

#	Article	IF	CITATIONS
37	Synthesis Route to Supported Gold Nanoparticle Layered Double Hydroxides as Efficient Catalysts in the Electrooxidation of Methanol. Langmuir, 2012, 28, 15065-15074.	3.5	38
38	Comparative study between organic and inorganic entrapment matrices for urease biosensor development. Sensors and Actuators B: Chemical, 2007, 123, 671-679.	7.8	37
39	An insight into the electrochemical behavior of Co/Al layered double hydroxide thin films prepared by electrodeposition. Journal of Power Sources, 2012, 201, 360-367.	7.8	35
40	Electrodeposition of Layered Double Hydroxides on platinum: Insights into the reactions sequence. Electrochimica Acta, 2015, 152, 75-83.	5.2	35
41	Possible analytical application of laponite clay modified electrodes. Journal of Electroanalytical Chemistry, 1994, 379, 103-110.	3.8	34
42	Electrochemical Study of Anionic Ferrocene Derivatives Intercalated in Layered Double Hydroxides: Application to Glucose Amperometric Biosensors. Electroanalysis, 2009, 21, 399-408.	2.9	34
43	Amperometric biosensors based on LDH-ALGINATE hybrid nanocomposite for aqueous and non-aqueous phenolic compounds detection. Sensors and Actuators B: Chemical, 2010, 150, 36-42.	7.8	34
44	Electrochemically assisted deposition by local pH tuning: a versatile tool to generate ordered mesoporous silica thin films and layered double hydroxide materials. Journal of Solid State Electrochemistry, 2015, 19, 1905-1931.	2.5	31
45	A new approach for nitrite determination based on a HRP/catalase biosensor. Materials Science and Engineering C, 2008, 28, 726-730.	7.3	30
46	Dynamic Characterization of Inter- and Intralamellar Domains of Cobalt-Based Layered Double Hydroxides upon Electrochemical Oxidation. Chemistry of Materials, 2016, 28, 7793-7806.	6.7	28
47	Fabrication of organic phase biosensors based on multilayered polyphenol oxidase protected by an alginate coating. Electrochemistry Communications, 2001, 3, 727-732.	4.7	27
48	A templated electrosynthesis of macroporous NiAl layered double hydroxides thin films. Chemical Communications, 2011, 47, 1761-1763.	4.1	27
49	Bacteria encapsulated in layered double hydroxides: Towards an efficient bionanohybrid for pollutant degradation. Colloids and Surfaces B: Biointerfaces, 2015, 126, 344-350.	5.0	27
50	Rutin Determination at an Amperometric Biosensor. Electroanalysis, 2007, 19, 253-258.	2.9	26
51	Direct Electron Transfer and Enhanced Electrocatalytic Activity of Hemoglobin at Iron-Rich Clay Modified Electrodes. Langmuir, 2009, 25, 10376-10383.	3.5	25
52	Structural and electrochemical characterization of metallo-porphyrins intercalated into ZnCr-layered double hydroxides: some evidence of dimer formation. New Journal of Chemistry, 2011, 35, 1898.	2.8	24
53	Organic phase PPO biosensor based on hydrophilic films of electropolymerized polypyrrole. Electrochimica Acta, 2005, 50, 3713-3718.	5.2	23
54	Electrocatalytic Properties of Metal Phthalocyanine Tetrasulfonate Intercalated in Metal Layered Simple Hydroxides (Metal: Co, Cu, and Zn). Journal of Physical Chemistry C, 2015, 119, 13335-13342.	3.1	23

#	Article	IF	Citations
55	Concomitant Intercalation and Decomplexation of Ferrocene Sulfonates in Layered Double Hydroxides. Journal of Solid State Chemistry, 1999, 144, 143-151.	2.9	22
56	Optimized immobilization of transketolase from E. coli in MgAl-layered double hydroxides. Colloids and Surfaces B: Biointerfaces, 2013, 112, 452-459.	5 . 0	22
57	Insulator semiconductor structures coated with biodegradable latexes as encapsulation matrix for ureaseâ [*] †. Biosensors and Bioelectronics, 2005, 20, 2318-2323.	10.1	21
58	H2O2 determination at iron-rich clay modified electrodes. Electrochimica Acta, 2009, 54, 4237-4244.	5. 2	21
59	Amperometric Biosensor Based on Galactose Oxidase Immobilized in Clay Matrix. Electroanalysis, 2013, 25, 630-635.	2.9	21
60	Interfacing a heteropolytungstate complex and gelatin through a coacervation process: design of bionanocomposite films as novel electrocatalysts. Journal of Materials Chemistry A, 2014, 2, 9208-9220.	10.3	20
61	Insight of an easy topochemical oxidative reaction in obtaining high performance electrochemical capacitor based on CollCollI monometallic cobalt Layered Double Hydroxide. Journal of Power Sources, 2015, 293, 1-10.	7.8	19
62	Chiral Polyol Synthesis Catalyzed by a Thermostable Transketolase Immobilized on Layered Double Hydroxides in Ionic liquids. ChemCatChem, 2015, 7, 3163-3170.	3.7	18
63	Electrochemical properties of layered double hydroxides containing 3d metal cations. Journal of Solid State Electrochemistry, 2015, 19, 1975-1983.	2.5	18
64	Amperometric detection of the herbicide mesotrione based on competitive reactions at nitroreductase@layered double hydroxide bioelectrode. Journal of Electroanalytical Chemistry, 2019, 835, 324-328.	3.8	18
65	Electrochemical detection of transketolase activity using a tyrosinase biosensor. Biosensors and Bioelectronics, 2010, 26, 139-143.	10.1	15
66	Insights into the Structure and the Electrochemical Reactivity of Cobalt-Manganese Layered Double Hydroxides: Application to H ₂ O ₂ Sensing. Journal of Physical Chemistry C, 2020, 124, 15585-15599.	3.1	15
67	Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate. Biosensors and Bioelectronics, 2017, 87, 850-857.	10.1	14
68	Evaluation of hierarchical glucose oxidase/Co3Mn-CO3 LDH modified electrodes for glucose detection. Electrochimica Acta, 2021, 376, 138050.	5. 2	13
69	Hybrid Co2Al-ABTS/reduced graphene oxide Layered Double Hydroxide: Towards O2 biocathode development. Electrochimica Acta, 2015, 158, 113-120.	5.2	12
70	A Fast and Direct Amperometric Determination of Hg ²⁺ by a Bienzyme Electrode Based on the Competitive Activities of Glucose Oxidase and Laccase. Electroanalysis, 2011, 23, 1776-1779.	2.9	11
71	A general route to nanostructured M[V3O8] and $Mx[V6O16]$ (x = 1 and 2) and their first evaluation for building enzymatic biosensors. Journal of Materials Chemistry, 2012, 22, 15291.	6.7	11
72	An efficient amperometric transketolase assay: Towards inhibitor screening. Biosensors and Bioelectronics, 2014, 62, 90-96.	10.1	11

#	Article	IF	Citations
73	Highâ€Throughput Electrochemical Screening Assay for Free and Immobilized Oxidases: Electrochemiluminescence and Intermittent Pulse Amperometry. ChemElectroChem, 2017, 4, 957-966.	3.4	11
74	Assembly of nitroreductase and layered double hydroxides toward functional biohybrid materials. Journal of Colloid and Interface Science, 2019, 533, 71-81.	9.4	11
75	Role of amphiphilic surfactant in electrochemical and spectroscopic behavior of p-nitrophenoxyalkyl ammonium salts. Journal of Colloid and Interface Science, 1986, 113, 521-529.	9.4	10
76	Thin bacteria/Layered Double Hydroxide films using a layer-by-layer approach. Journal of Colloid and Interface Science, 2016, 474, 151-158.	9.4	10
77	Innovative Electrochemical Screening Allows Transketolase Inhibitors to Be Identified. Analytical Chemistry, 2018, 90, 9241-9248.	6.5	9
78	Electrochromic Thin Films Based on NiAl Layered Double Hydroxide Nanoclusters for Smart Windows and Low-Power Displays. ACS Applied Nano Materials, 2020, 3, 6552-6562.	5.0	9
79	Adsorption of Glycosidic Surfactants at the Mercury Electrode. Journal of Colloid and Interface Science, 1996, 184, 671-679.	9.4	7
80	Galactose Oxidase/Prussian Blue Based Biosensors. Electroanalysis, 2015, 27, 1341-1344.	2.9	7
81	Confined Growth of NiAl-Layered Double Hydroxide Nanoparticles Within Alginate Gel: Influence on Electrochemical Properties. Frontiers in Chemistry, 2020, 8, 561975.	3.6	7
82	Electroreducible amphiphilic compounds. Journal of Colloid and Interface Science, 1989, 128, 427-436.	9.4	6
83	Adsorption at the mercury electrode in relation to micelle and mixed micelle formation. Case of electroreducible phenoxyalkyl sulfates and SDS. Journal of Electroanalytical Chemistry, 1993, 349, 127-139.	3.8	5
84	A simple strategy based on photobiotin irradiation for the photoelectrochemical immobilization of proteins on electrode surfaces. Materials Science and Engineering C, 2006, 26, 436-441.	7. 3	5
85	Electrochemical Reduction in an Aprotic Medium of New Functionalized Amphiphilic Molecules Derived from Sugars: Stereoselective Pinacolization and an Example of a Glycosidic Carbon-Oxygen Bond Cleavage. European Journal of Organic Chemistry, 2000, 2000, 813-821.	2.4	4
86	Adsorption of Glycosidic Surfactants at the Mercury Electrode. Journal of Colloid and Interface Science, 1997, 188, 238.	9.4	1
87	Electrochemical behaviour of new electroreducible amphiphilic saccharide derivatives II: Electroreduction in protic media. New Journal of Chemistry, 1999, 23, 1171-1175.	2.8	1