Rüdiger Quay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3833601/publications.pdf

Version: 2024-02-01

284 papers 3,337 citations

218592 26 h-index 289141 40 g-index

292 all docs 292 docs citations

times ranked

292

2368 citing authors

#	Article	IF	Citations
1	Analysis and Simulation of Heterostructure Devices. Computational Microelectronics, 2004, , .	1.2	129
2	High-temperature modeling of AlGaN/GaN HEMTs. Solid-State Electronics, 2010, 54, 1105-1112.	0.8	120
3	A temperature dependent model for the saturation velocity in semiconductor materials. Materials Science in Semiconductor Processing, 2000, 3, 149-155.	1.9	104
4	The Continuous Inverse Class-F Mode With Resistive Second-Harmonic Impedance. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 1928-1936.	2.9	95
5	Robust AlGaN/GaN Low Noise Amplifier MMICs for C-, Ku- and Ka-Band Space Applications. , 2009, , .		59
6	Gate-Recessed AlGaN/GaN Based Enhancement-Mode High Electron Mobility Transistors for High Frequency Operation. Japanese Journal of Applied Physics, 2009, 48, 04C083.	0.8	55
7	Assembly and Packaging Technologies for High-Temperature and High-Power GaN Devices. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1402-1416.	1.4	55
8	Metalâ€Organic Chemical Vapor Deposition of Aluminum Scandium Nitride. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900535.	1.2	54
9	Ultra-Wideband GaN MMIC Chip Set and High Power Amplifier Module for Multi-Function Defense AESA Applications. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3043-3051.	2.9	52
10	102-GHz AllnN/GaN HEMTs on Silicon With 2.5-W/mm Output Power at 10 GHz. IEEE Electron Device Letters, 2009, 30, 796-798.	2.2	49
11	The Resistive-Reactive Class-J Power Amplifier Mode. IEEE Microwave and Wireless Components Letters, 2015, 25, 666-668.	2.0	49
12	GaN-Based Submicrometer HEMTs With Lattice-Matched InAlGaN Barrier Grown by MBE. IEEE Electron Device Letters, 2010, 31, 671-673.	2.2	48
13	D-Band and G-Band High-Performance GaN Power Amplifier MMICs. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 5080-5089.	2.9	43
14	Physics-Based Modeling of GaN HEMTs. IEEE Transactions on Electron Devices, 2012, 59, 685-693.	1.6	41
15	The Sky's the Limit: Key Technology and Market Trends in Satellite Communications. IEEE Microwave Magazine, 2014, 15, 65-78.	0.7	41
16	GaN MMIC based T/R-Module Front-End for X-Band Applications. , 2008, , .		40
17	Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures. Journal of Applied Physics, 2009, 106, .	1.1	37
18	Monolithically integrated power circuits in highâ€voltage GaNâ€on‧i heterojunction technology. IET Power Electronics, 2018, 11, 681-688.	1.5	35

#	Article	IF	CITATIONS
19	A Systematic State-Space Approach to Large-Signal Transistor Modeling. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 195-206.	2.9	33
20	GaNâ€based high voltage transistors for efficient power switching. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 831-834.	0.8	33
21	Influence of the surface potential on electrical properties of AlxGa1â°'xN/GaN heterostructures with different Al-content: Effect of growth method. Journal of Applied Physics, 2010, 107, .	1.1	32
22	Compositional variation of nearly lattice-matched InAlGaN alloys for high electron mobility transistors. Applied Physics Letters, 2010, 96, .	1.5	31
23	Polarization induced interface and electron sheet charges of pseudomorphic ScAlN/GaN, GaAlN/GaN, InAlN/GaN, and InAlN/InN heterostructures. Journal of Applied Physics, 2021, 129, .	1.1	30
24	A coplanar X-band AlGaN/GaN power amplifier MMIC on s.i. SiC substrate. IEEE Microwave and Wireless Components Letters, 2005, 15, 460-462.	2.0	29
25	High-Current Submicrometer Tri-Gate GaN High-Electron Mobility Transistors With Binary and Quaternary Barriers. IEEE Journal of the Electron Devices Society, 2016, 4, 1-6.	1.2	28
26	Comparison of InP/InGaAs DHBT distributed amplifiers as modulator drivers for 80-Gbit/s operation. IEEE Transactions on Microwave Theory and Techniques, 2005, 53, 3378-3387.	2.9	27
27	GaN HEMT and MMIC development at Fraunhofer IAF: performance and reliability. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1215-1220.	0.8	27
28	Generation of traps in AlGaN/GaN HEMTs during RF-and DC-stress test. , 2012, , .		27
29	A 40 dBm AlGaN/GaN HEMT power amplifier MMIC for SatCom applications at K-band. , 2016, , .		27
30	Reliability of 70 nm metamorphic HEMTs. Microelectronics Reliability, 2004, 44, 939-943.	0.9	26
31	AlGaN/GaN epitaxy and technology. International Journal of Microwave and Wireless Technologies, 2010, 2, 3-11.	1.5	26
32	Integrated reverse-diodes for GaN-HEMT structures. , 2015, , .		26
33	Substrate biasing effects in a high-voltage, monolithically-integrated half-bridge GaN-Chip., 2017, , .		25
34	High Efficiency Digital GaN MMIC Power Amplifiers for Future Switch-Mode Based Mobile Communication Systems. , 2009, , .		24
35	GaN HEMTs and MMICs for space applications. Semiconductor Science and Technology, 2013, 28, 074010.	1.0	24
36	Suppression of Iron Memory Effect in GaN Epitaxial Layers. Physica Status Solidi (B): Basic Research, 2018, 255, 1700377.	0.7	24

#	Article	IF	CITATIONS
37	Reliability and degradation mechanism of AlGaN/GaN HEMTs for next generation mobile communication systems. Microelectronics Reliability, 2009, 49, 474-477.	0.9	23
38	New Low-Frequency Dispersion Model for AlGaN/GaN HEMTs Using Integral Transform and State Description. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 154-167.	2.9	23
39	AlN/GaN HEMTs grown by MBE and MOCVD: Impact of Al distribution. Physica Status Solidi (B): Basic Research, 2017, 254, 1600715.	0.7	23
40	20W GaN HPAs for Next Generation X-Band T/R-Modules. , 2006, , .		22
41	Field-Plate Optimization of AlGaN/GaN HEMTs. , 2006, , .		21
42	Enhancement of the Broadband Efficiency of a Class-J Power Amplifier With Varactor-based Dynamic Load Modulation. IEEE Microwave and Wireless Components Letters, 2017, 27, 180-182.	2.0	21
43	Dual-Gate GaN MMICs for MM-Wave Operation. IEEE Microwave and Wireless Components Letters, 2011, 21, 95-97.	2.0	20
44	Radiative inter-valley transitions as a dominant emission mechanism in AlGaN/GaN high electron mobility transistors. Semiconductor Science and Technology, 2012, 27, 125003.	1.0	20
45	Monolithic integrated quasi-normally-off gate driver and 600 V GaN-on-Si HEMT. , 2015, , .		20
46	W-band SPDT switches in planar and tri-gate 100-nm gate-length GaN-HEMT technology. , 2018, , .		20
47	Transfer of AlGaN/GaN RF-devices onto diamond substrates via van der Waals bonding. International Journal of Microwave and Wireless Technologies, 2018, 10, 666-673.	1.5	20
48	Design, Analysis and Evaluation of a Broadband High-Power Amplifier for Ka-Band Frequencies. , 2019, , .		20
49	Large-Area Lateral AlGaN/GaN-on-Si Field-Effect Rectifier With Low Turn-On Voltage. IEEE Electron Device Letters, 2020, 41, 993-996.	2.2	20
50	A 4-W X-band compact coplanar high-power amplifier MMIC with 18-dB gain and 25% PAE. IEEE Journal of Solid-State Circuits, 2003, 38, 1433-1437.	3.5	19
51	Investigation of Leakage Current of AlGaN/GaN HEMTs Under Pinch-Off Condition by Electroluminescence Microscopy. Journal of Electronic Materials, 2010, 39, 756-760.	1.0	19
52	Development of 100 nm gate AlGaN/GaN HEMT and MMIC technology suitable for mmâ€wave applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 903-906.	0.8	19
53	Full W-Band GaN Power Amplifier MMICs Using a Novel Type of Broadband Radial Stub. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 5664-5675.	2.9	19
54	PCB-Embedded GaN-on-Si Half-Bridge and Driver ICs With On-Package Gate and DC-Link Capacitors. IEEE Transactions on Power Electronics, 2021, 36, 83-86.	5.4	19

#	Article	IF	CITATIONS
55	Design of highly-efficient GaN X-band-power-amplifier MMICs. , 2009, , .		18
56	Development of a high transconductance GaN MMIC technology for millimeter wave applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 297-299.	0.8	18
57	Q- and E-band amplifier MMICs for satellite communication. , 2014, , .		18
58	Soft-switching 3 MHz converter based on monolithically integrated half-bridge GaN-chip. , 2016, , .		18
59	RF Performance of Trigate GaN HEMTs. IEEE Transactions on Electron Devices, 2016, 63, 4255-4261.	1.6	18
60	Limitations and Implementation Strategies of Interstage Matching in a 6-W, 28–38-GHz GaN Power Amplifier MMIC. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2541-2553.	2.9	18
61	A Beyond 110 GHz GaN Cascode Low-Noise Amplifier with 20.3 dBm Output Power. , 2018, , .		17
62	High-Power ($\&$ gt;2 W) E-Band PA MMIC Based on High Efficiency GaN-HEMTs with Optimized Buffer. , 2019, , .		17
63	A Wideband <i>E</i> / <i>W</i> -Band Low-Noise Amplifier MMIC in a 70-nm Gate-Length GaN HEMT Technology. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 1367-1376.	2.9	17
64	High-Gain Millimeter-Wave AlGaN/GaN Transistors. IEEE Transactions on Electron Devices, 2013, 60, 3112-3118.	1.6	16
65	A 67 GHz GaN Voltage-Controlled Oscillator MMIC With High Output Power. IEEE Microwave and Wireless Components Letters, 2013, 23, 374-376.	2.0	16
66	Highâ€Power Microwave GaN/AlGaN HEMTs and MMICs on SiC and Silicon Substrates for Modern Radio Communication. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700655.	0.8	16
67	Millimeter-Wave Single-Pole Double-Throw Switches Based on a 100-nm Gate-Length AlGaN/GaN-HEMT Technology. , 2019, , .		16
68	Industrial application of heterostructure device simulation. IEEE Journal of Solid-State Circuits, 2001, 36, 1365-1370.	3.5	15
69	Reliability status of GaN transistors and MMICs in Europe. , 2010, , .		15
70	Enhanced GaN HEMT technology for E-band power amplifier MMICs with 1W output power. , 2017, , .		15
71	Epitaxial growth optimization of AlGaN/GaN high electron mobility transistor structures on 3C-SiC/Si. Journal of Applied Physics, 2019, 125, .	1.1	15
72	Growth and electrical properties of Al _{<i>x</i>} Ga _{1â^'<i>x</i>} N/GaN heterostructures with different Alâ€content. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2652-2657.	0.8	14

#	Article	IF	CITATIONS
73	A highly linear 84 GHz low noise amplifier MMIC in AlGaN/GaN HEMT technology. , 2011, , .		14
74	A 92 GHz GaN HEMT voltage-controlled oscillator MMIC. , 2014, , .		14
75	Watt-level non-uniform distributed 6–37 GHz power amplifier MMIC with dual-gate driver stage in GaN technology. , 2014, , .		14
76	8–42 GHz GaN non-uniform distributed power amplifier MMICs in microstrip technology. , 2012, , .		13
77	Broadband E-Band Power Amplifier MMIC Based on an AlGaN/GaN HEMT Technology with 30 dBm Output Power. , 2016, , .		13
78	Effect of substrate termination on switching loss and switching time using 600 V GaN-on-Si HEMTs with integrated gate driver in half-bridges. , 2017, , .		13
79	InP DHBT Based IC Technology for over 80 Gbit/s Data Communications. IEICE Transactions on Electronics, 2006, E89-C, 931-936.	0.3	13
80	Building Blocks for GaN Power Integration. IEEE Access, 2021, 9, 163122-163137.	2.6	13
81	Nonlinear electronic transport and device performance of HEMTs. IEEE Transactions on Electron Devices, 2001, 48, 210-217.	1.6	12
82	AlGaN/GaN HEMTs on SiC operating at 40 GHz., 2002,,.		12
83	AlGaN/GaN HEMTs on SiC: towards power operation at V-band. , 2003, , .		12
84	High-efficiency GaN HEMTs on 3-inch semi-insulating SiC substrates. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1078-1080.	0.8	12
85	Reproducible and uniform growth of GaN based HEMTs on 4 inch SiC by plasma assisted molecular beam epitaxy suitable for production. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1450-1454.	0.8	12
86	High-gain over 30% PAE power amplifier MMICs in 100 nm GaN technology at Ka-band frequencies. , 2015,		12
87	Reliability of 100 nm AlGaN/GaN HEMTs for mm-wave applications. Microelectronics Reliability, 2017, 76-77, 292-297.	0.9	12
88	Monolithic Integrated AlGaN/GaN Power Converter Topologies on Highâ€Voltage AlN/GaN Superlattice Buffer. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000404.	0.8	12
89	Growth of AlGaN/GaN based electronic device structures with semi-insulating GaN buffer and AlN interlayer. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2639-2642.	0.8	11
90	Predictive Simulation of AlGaN/GaN HEMTs., 2007,,.		11

#	Article	IF	Citations
91	X-band T/R-module front-end based on GaN MMICs. International Journal of Microwave and Wireless Technologies, 2009, 1, 387-394.	1.5	11
92	Guest Editorial Special Issue on GaN Electronic Devices. IEEE Transactions on Electron Devices, 2013, 60, 2975-2981.	1.6	11
93	Degradation of 0.25 \hat{l} /4m GaN HEMTs under high temperature stress test. Microelectronics Reliability, 2015, 55, 1667-1671.	0.9	11
94	Trapping Effects at the Drain Edge in 600 V GaN-on-Si HEMTs. IEEE Transactions on Electron Devices, 2016, 63, 598-605.	1.6	11
95	First demonstration of W-band Tri-gate GaN-HEMT power amplifier MMIC with 30 dBm output power. , 2017, , .		11
96	Operation of PCB-embedded, high-voltage multilevel-converter GaN-IC., 2017, , .		11
97	Integrated Current Sensing in GaN Power ICs. , 2019, , .		11
98	Fundamental low phase noise InP-based DHBT VCOs with high output power operating up to 75 GHz., 2004, , .		10
99	Advanced High Power Amplifier Chain for X-Band T/R-Modules based on GaN MMICs. , 2006, , .		10
100	X-Band High-Power Microstrip AlGaN/GaN HEMT Amplifier MMICs., 2006,,.		10
101	Continuous-ClassF3 power amplifier mode varying simultaneously first 3 harmonic impedances. , 2012, , .		10
102	Single-input GaN gate driver based on depletion-mode logic integrated with a 600 V GaN-on-Si power transistor. , 2016 , , .		10
103	A Q-band power amplifier MMIC using 100 nm AlGaN/GaN HEMT. , 2016, , .		10
104	Investigations of Active Antenna Doherty Power Amplifier Modules Under Beam-Steering Mismatch. IEEE Microwave and Wireless Components Letters, 2018, 28, 930-932.	2.0	10
105	mm-Wave operation of AlN/GaN-devices and MMICs at V- & Dand. , 2018, , .		10
106	Broadband 400-GHz InGaAs mHEMT Transmitter and Receiver S-MMICs. IEEE Transactions on Terahertz Science and Technology, 2021, 11, 660-675.	2.0	10
107	Fundamental low phase noise InP-based DHBT VCO operating up to 89â€GHz. Electronics Letters, 2005, 41, 961.	0.5	10
108	Analysis of HBT behavior after strong electrothermal stress. , 2000, , .		9

#	Article	IF	CITATIONS
109	Over 80â€Gbitâ^•s 2:1 multiplexer and low power selector ICs using InPâ^•InGaAs DHBTs. Electronics Letters, 2005, 41, 644.	0.5	9
110	GaN-based high-frequency devices and circuits: A Fraunhofer perspective. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 491-496.	0.8	9
111	Benchmarking of Large-Area GaN-on-Si HFET Power Devices for Highly-Efficient, Fast-Switching Converter Applications. , 2013, , .		9
112	Influence of surface states on the voltage robustness of AlGaN/GaN HFET power devices. Microelectronics Reliability, 2014, 54, 2656-2661.	0.9	9
113	K-band power amplifiers in a 100 nm GaN HEMT microstrip line MMIC technology. , 2014, , .		9
114	Assembly and packaging technologies for high-temperature and high-power GaN HEMTs. , 2014, , .		9
115	Performance and parasitic analysis of sub-micron scaled tri-gate AlGaN/GaN HEMT design. , 2015, , .		9
116	GaN-based E-band power amplifier modules. , 2016, , .		9
117	Linear temperature sensors in high-voltage GaN-HEMT power devices. , 2016, , .		9
118	A 5 W AlGaN/GaN power amplifier MMIC for 25–27 GHz downlink applications. , 2018, , .		9
119	Adaptive low-temperature covalent bonding of III-nitride thin films by extremely thin water interlayers. Applied Physics Letters, 2019, 114, 252103.	1.5	9
120	Highly linear 90-170 GHz SPDT Switch with High Isolation for Fully Integrated InP Transceivers. , 2019, , .		9
121	Harmonic-Injection Class-E _M /F _n Power Amplifier With Finite DC-Feed Inductance and Isolation Circuit. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3319-3334.	2.9	9
122	Critical factors influencing the voltage robustness of AlGaN/GaN HEMTs. Microelectronics Reliability, 2011, 51, 224-228.	0.9	8
123	Novel semi-reactively-matched multistage broadband power amplifier architecture for monolithic ICs in GaN technology. , 2013, , .		8
124	Analysis and modeling of GaN-based multi field plate Schottky power diodes. , 2016, , .		8
125	First Demonstration of G-Band Broadband GaN Power Amplifier MMICs Operating Beyond 200 GHz., 2020, , .		8
126	AlGaN/GaN-HEMTs for power applications up to 40 GHz. , 2002, , .		7

#	Article	IF	Citations
127	Multistage broadband amplifiers based on GaN HEMT technology for $3G/4G$ base station applications with extremely high bandwidth., 2005 ,,.		7
128	InP DHBT-Based Monolithically Integrated CDR/DEMUX IC Operating at 80 Gbit/s. IEEE Journal of Solid-State Circuits, 2006, 41, 2215-2223.	3.5	7
129	Efficient AlGaN/GaN HEMT Power Amplifiers. , 2008, , .		7
130	Broadband GaN-Based Switch-Mode Core MMICs with 20 W Output Power Operating at UHF., 2011,,.		7
131	A single-chip 77 GHz heterodyne receiver MMIC in 100 nm AlGaN/GaN HEMT technology. , 2011, , .		7
132	Influence of AlGaN barrier thickness on electrical and device properties in Al0.14Ga0.86N/GaN high electron mobility transistor structures. Journal of Applied Physics, 2012, 112 , .	1.1	7
133	Dual-band Class-ABJ AlGaN/GaN high power amplifier. , 2012, , .		7
134	Submicron-AlGaN/GaN MMICs for space applications. , 2013, , .		7
135	Realization of a 30-W highly efficient and linear reconfigurable dual-band power amplifier using the continuous mode approach. International Journal of Microwave and Wireless Technologies, 2014, 6, 115-128.	1.5	7
136	Monolithic three-stage 6–18GHz high power amplifier with distributed interstage in GaN technology. , 2015, , .		7
137	High-Efficiency, High-Temperature Continuous Class-E Sub-Waveform Solution AlGaN/GaN Power Amplifier. IEEE Microwave and Wireless Components Letters, 2015, 25, 526-528.	2.0	7
138	Broadband 100-W <i>Ka</i> -Band SSPA Based on GaN Power Amplifiers. IEEE Microwave and Wireless Components Letters, 2022, 32, 708-711.	2.0	7
139	Simulation of InAlAs/InGaAs high electron mobility transistors with a single set of physical parameters. , 0, , .		6
140	Simulation of gallium-arsenide based high electron mobility transistors. , 2000, , .		6
141	Development of a 2″-AlGaN/GaN HEMT technology on sapphire and SiC for mm-wave high-voltage power applications. Physica Status Solidi A, 2003, 200, 191-194.	1.7	6
142	Development of rugged 2 GHz power bars delivering more than 100 W and 60% power added efficiency. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2398-2403.	0.8	6
143	GaN devices for communication applications: evolution of amplifier architectures. International Journal of Microwave and Wireless Technologies, 2010, 2, 85-93.	1.5	6
144	High linearity active GaN-HEMT down-converter MMIC for E-band radar applications. , 2014, , .		6

#	Article	IF	CITATIONS
145	Active harmonic source-/load-pull measurements of AlGaN/GaN HEMTs at X-band frequencies. , 2014, , .		6
146	Growth model investigation for AlN/Al(Ga)InN interface growth by plasma-assisted molecular beam epitaxy for high electron mobility transistor applications. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2854-2860.	0.8	6
147	High-voltage stress time-dependent dispersion effects in AlGaN/GaN HEMTs. , 2015, , .		6
148	Quasi-normally-off GaN gate driver for high slew-rate d-mode GaN-on-Si HEMTs. , 2015, , .		6
149	Switching frequency modulation for GaN-based power converters. , 2015, , .		6
150	A high-power Ka-band single-pole single-throw switch MMIC using 0.25 Âμm GaN on SiC. , 2015, , .		6
151	Monolithically-Integrated Mulitlevel Inverter on Lateral GaN-on-Si Technology for High-Voltage Applications. , 2015, , .		6
152	Design, Realization, and Evaluation of a Riemann Pump in GaN Technology. IEEE Microwave and Wireless Components Letters, 2017, 27, 672-674.	2.0	6
153	A sequential power amplifier at 3.5 GHz for 5G applications. , 2017, , .		6
154	Multi-Stage Cascode in High-Voltage AlGaN/GaN-on-Si Technology. , 2018, , .		6
155	Broadband GaN-Based Power Amplifier MMIC and Module for V-Band Measurement Applications. , 2018, ,		6
156	Optimization of Metalâ€Organic Chemical Vapor Deposition Regrown nâ€GaN. Physica Status Solidi (B): Basic Research, 2020, 257, 1900436.	0.7	6
157	Linear broadband GaN MMICs for Ku-band Applications. , 2006, , .		5
158	Hydrodynamic Modeling of AlGaN/GaN HEMTs., 2007,, 273-276.		5
159	Design and realization of GaN RF-devices and circuits from 1 to 30ÂGHz. International Journal of Microwave and Wireless Technologies, 2010, 2, 115-120.	1.5	5
160	Reliability and degradation mechanism of 0.25 ${\hat A}\mu m$ AlGaN/GaN HEMTs under RF stress conditions. , 2011, , .		5
161	Fractal structures for low-resistance large area AlGaN/GaN power transistors. , 2012, , .		5
162	(In)AlGaN Heterojunction Field Effect Transistors and Circuits for High-Power Applications at Microwave and Millimeter-Wave Frequencies. Japanese Journal of Applied Physics, 2013, 52, 08JN13.	0.8	5

#	Article	IF	CITATIONS
163	High-Gain AlGaN/GaN HEMT Single Chip E-Band Power Amplifier MMIC with 30 dBm Output Power., 2015,		5
164	Enhancement-mode AlGaN/GaN FinFETs with high on/off performance in $100\mathrm{nm}$ gate length. , 2016 , , .		5
165	Performance of tri-gate AlGaN/GaN HEMTs. , 2016, , .		5
166	Comparison of reliability of 100â€nm AlGaN/GaN HEMTs with T-gate and SAG-gate technology. Microelectronics Reliability, 2018, 88-90, 385-388.	0.9	5
167	Riemann-Pump based RF-Power DACs in GaN Technology for 5G Base Stations. , 2018, , .		5
168	High-Power-Density AlGaN/GaN Technology for 100-V Operation at L-Band Frequencies. , 2019, , .		5
169	Asymmetrical Substrate-Biasing Effects at up to 350V Operation of Symmetrical Monolithic Normally-Off GaN-on-Si Half-Bridges. , 2019, , .		5
170	3 GHz RF measurements of AlGaN/GaN transistors transferred from silicon substrates onto single crystalline diamond. AIP Advances, 2019, 9, 125106.	0.6	5
171	A GaN-based Current Sense Amplifier for GaN HEMTs with Integrated Current Shunts. , 2020, , .		5
172	QFN-packaged highly-linear cascode GaN LNA MMIC from 0.5 to 3 GHz., 2013,,.		5
173	Deep-level characterization of GaN-on-GaN current aperture vertical electron transistors. , 2021, , .		5
174	16-Way Ka-Band Power Combiner Using Novel Waveguide Transitions. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 3074-3086.	2.9	5
175	InP/InGaAs-DHBT distributed amplifier MMICs exceeding 80 GHz bandwidth. , 2005, , .		4
176	Design and Analysis of a 34 dBm Ka-Band GaN High Power Amplifier MMIC. , 2006, , .		4
177	X-ray topographic imaging of (Al, Ga)N/GaN based electronic device structures on SiC. Applied Surface Science, 2006, 253, 209-213.	3.1	4
178	Balanced Microstrip AlGaN/GaN HEMT Power Amplifier MMIC for X-Band Applications. , 2008, , .		4
179	AlGaN/GaN power amplifiers for ISM applications. Solid-State Electronics, 2012, 74, 108-113.	0.8	4
180	Reliability of GaN HEMTs with a 100 nm gate length under DC-stress tests. , 2014, , .		4

#	Article	IF	CITATIONS
181	Broadband low-noise GaN HEMT TWAs using an active distributed drain bias circuit., 2015,,.		4
182	New Concept for Power Compression Improvement of GaN Cascodes in Broadband Power Amplifiers. IEEE Microwave and Wireless Components Letters, 2017, 27, 590-592.	2.0	4
183	Integrated 2-b Riemann Pump RF-DAC in GaN Technology for 5G Base Stations. , 2019, , .		4
184	Consistent Modelling of I-V and C-V Behaviour of GaN HEMTs in Presence of Trapping. , 2019, , .		4
185	190-GHz G-Band GaN Amplifier MMICs with 40GHz of Bandwidth. , 2019, , .		4
186	Large-Signal Modeling of a Scalable High-\${Q}\$ AlGaN/GaN High Electron-Mobility Varactor. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 922-927.	2.9	4
187	Modeling of Electron Transport in GaN-Based Materials and Devices. AIP Conference Proceedings, 2007, , .	0.3	3
188	Reliability and degradation mechanism of AlGaN/GaN HEMTs for next generation mobile communication systems. , 2008, , .		3
189	AlGaN/GaN-based power amplifiers for mobile radio applications: a review from the system supplier's perspective. International Journal of Microwave and Wireless Technologies, 2010, 2, 95-104.	1.5	3
190	Quaternary barriers for improved performance of GaNâ€based HEMTs. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2439-2441.	0.8	3
191	A high-gain high-power amplifier MMIC for V-band applications using 100Ânm AlGaN/GaN dual-gate HEMTs. International Journal of Microwave and Wireless Technologies, 2012, 4, 267-274.	1.5	3
192	A high gain SiGe-GaN switching power amplifier in the GHz-range. , 2012, , .		3
193	Tradeâ€offs between performance and reliability in AlGaN/GaN transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 365-368.	0.8	3
194	A microwave high-power GaN transistor with highly-integrated active digital switch-mode driver circuit. , 2014, , .		3
195	Characterization of AlGaN/GaN-on-Si HFETs in high-power converter applications. , 2014, , .		3
196	RF-MEMS multi-mode-matching networks for GaN power transistors. International Journal of Microwave and Wireless Technologies, 2014, 6, 447-458.	1.5	3
197	X-band high-efficiency GaAs MMIC PA. , 2014, , .		3
198	Multi-decade GaN feedback power amplifiers in common-source and cascode topology. , 2016, , .		3

#	Article	IF	CITATIONS
199	Hetero-integrated GaN MMICs: Hot Islands in a (Silicon) Ocean…., 2017,,.		3
200	Transfer of AlGaN/GaN RF-devices onto diamond substrates via van der Waals bonding., 2017,,.		3
201	Voltage- and Temperature-Dependent Degradation of AIN/GaN High Electron Mobility Transistors. , 2018, , .		3
202	First Full W-Band GaN Power Amplifier MMICs with Novel Broadband Radial Stubs and 50 GHz of Bandwidth. , $2018, \ldots$		3
203	High-Q Anti-Series AlGaN/GaN High Electron-Mobility Varactor. , 2019, , .		3
204	Deep Submicron III-N HEMTs – Technological Development and Reliability. , 2019, , .		3
205	A Pseudo-Complementary GaN-Based Gate Driver with Reduced Static Losses. , 2019, , .		3
206	A 600V p-GaN Gate HEMT with Intrinsic Freewheeling Schottky-Diode in a GaN Power IC with Bootstrapped Driver and Sensors. , 2020, , .		3
207	Si-Substrate Removal for AlGaN/GaN Devices on PCB Carriers. , 2020, , .		3
208	Electroluminescence Investigation of the Lateral Field Distribution in AlGaN/GaN HEMTs for Power Applications. Acta Physica Polonica A, 2014, 125, 982-985.	0.2	3
209	Industrial application of heterostructure device simulation. , 0, , .		2
210	Flip-Chip Integration of Power HEMTs: A Step Towards a GaN MMIC Technology. , 2003, , .		2
211	Efficient AlGaN/GaN Linear and Digital-Switch-Mode Power Amplifiers for Operation at 2 GHz. IEICE Transactions on Electronics, 2010, E93-C, 1238-1244.	0.3	2
212	Gallium Nitride RF-devices: An overview on the development activities in Europe., 2010,,.		2
213	Comparison of a single and a dual-gate GaN switching-amplifier for future communication systems. , $2011, \ldots$		2
214	Multiband Doherty RF power amplifier. , 2011, , .		2
215	Microscopic Degradation Analysis of RF-Stressed AlGaN/GaN HEMTs. Materials Science Forum, 2012, 725, 79-82.	0.3	2
216	Reverse bias stress test of GaN HEMTs for high-voltage switching applications. , 2012, , .		2

#	Article	IF	Citations
217	A U-band broadband power amplifier MMIC in 100 nm AlGaN/GaN HEMT technology. , 2012, , .		2
218	Recent developments of Gallium Nitride monolithically-microwave integrated circuits for space. , 2013, , .		2
219	Automatic extraction of analytical large-signal FET models with parameter estimation by function decomposition. , $2014, $, .		2
220	Design of GaN tri-gate HEMTs. , 2014, , .		2
221	Comparison of second-harmonic matching of AlGaN/GaN HEMTs at K-band. , 2014, , .		2
222	A novel broadband high-power Source-Pull/ Load-Pull concept for the HF- to UHF-range. , 2015, , .		2
223	Dual-gate HEMT parameter extraction based on 2.5D multiport simulation of passive structures. , 2016,		2
224	Packaged AlGaN/GaN HEMT power bars with 900 W output power and high PAE at L-band. , 2016, , .		2
225	Active multi-feed satcom systems with GaN SSPA at K-band. , 2016, , .		2
226	Two Q-band power amplifier MMICs in 100 nm AlGaN/GaN HEMT technology. , 2018, , .		2
227	RF-Noise Modeling of InGaAs Metamorphic HEMTs and MOSFETs. , 2018, , .		2
228	Low-frequency dispersion and state dependency in modem microwave III-V HEMTs. , 2018, , .		2
229	Simulation of RF MEMS based matching networks and a single pole double throw switch for Multiband T/R Modules. Advances in Radio Science, 0, 11, 197-206.	0.7	2
230	A 41.5 dBm Broadband AlGaN/GaN HEMT Balanced Power Amplifier at K-Band., 2022,,.		2
231	Spatially resolved X-ray diffraction measurements on (Al,Ga)N/GaN/4H-SiC heterostructures for electronic devices. Materials Science in Semiconductor Processing, 2006, 9, 8-14.	1.9	1
232	Development of AlGaN/GaN HEMTs with efficiencies above 60% up to $100\mathrm{V}$ for next generation mobile communication $100\mathrm{W}$ power bars. Physica Status Solidi C: Current Topics in Solid State Physics, 2009 , 6 , $1369\text{-}1372$.	0.8	1
233	GaN HFET MMICs with integrated Schottky-diode for highly efficient digital switch-mode power amplifiers at 2ÅGHz. International Journal of Microwave and Wireless Technologies, 2011, 3, 319-327.	1.5	1
234	AlGaN/GaN-based variable gain amplifiers for W-band operation. , 2013, , .		1

#	Article	IF	CITATIONS
235	Broadband 1.7–2.8 GHz high-efficiency (58%), high-power (43 dBm) Class-BJ GaN power amplifier including package engineering. , 2014, , .		1
236	Broadband 1.7–2.8 GHz high-efficiency (58%), high-power (43 dBm) Class-BJ GaN power amplifier including package engineering. , 2014, , .		1
237	A dual-band UMTS/LTE highly power-efficient class-ABJ Doherty GaN PA. , 2015, , .		1
238	Microwave monolithic integrated gallium-nitride switches for low static power reconfigurable switch matrix with passive transparent state for power failure redundancy. , 2015, , .		1
239	A GaN-Based 10.1MHz Class-F-1 300 W Continuous Wave Amplifier Targeting Industrial Power Applications. , 2016, , .		1
240	Slew rate control of a 600 V 55 mî © GaN cascode. , 2016, , .		1
241	Internally-packaged-matched continuous inverse class-FI wideband GaN HPA. , 2016, , .		1
242	High voltage GaN-based Schottky diodes in non-isolated LED buck converters. , 2016, , .		1
243	Noise degradation of cascodes in broadband power amplifiers. , 2017, , .		1
244	New concept to control the gain of GaN-cascodes in broadband power amplifiers. , 2017, , .		1
245	Investigation of High-Efficiency Hybrid Power Combining for Ka-Band Frequencies. , 2018, , .		1
246	A Novel Type of Broadband Radial Stub. , 2018, , .		1
247	State Dependency, Low-Frequency Dispersion, and Thermal Effects in Microwave III-V HEMTs., 2018,,.		1
248	Dynamic Load Modulated Low-Voltage GaN PA Using Novel Low-Loss GaN Varactors. , 2018, , .		1
249	Instabilities by Parasitic Substrate-Loop of GaN-on-Si HEMTs in Half-Bridges. , 2018, , .		1
250	X-band GaN high power amplifier with integrated power switch for airborne applications. , 2018, , .		1
251	A Novel 32-Gb/s 5.6-Vpp Digital-to-Analog Converter in 100 nm GaN Technology for 5G Signal Generation. , 2020, , .		1
252	Failure Analysis of 100 nm AlGaN/GaN HEMTs Stressed under On- and Off-State Stress. , 2020, , .		1

#	Article	IF	CITATIONS
253	Low-Power Differential Input to Single-Ended Output GaN RF-DAC for RF-Signal Generation. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1646-1653.	2.9	1
254	A GaN-Based Active Diode Circuit for Low-Loss Rectification. , 2021, , .		1
255	A 28-90-GHz GaN Power Amplifier MMIC Using an Integrated f _T -Doubler Topology., 2021,,.		1
256	Optimization of high-speed SiGe HBTs. , 0, , .		0
257	AlGaN/GaN HEMTs on SiC for high power broadband applications up to 40 GHz. Elektrotechnik Und Informationstechnik, 2003, 120, 75-78.	0.7	O
258	An AlGaN/GaN push-pull HEMT amplifier with 400 MHz bandwidth and 100 W peak output power. , 2005, , .		0
259	GaN/AlGaN HEMT hybrid and MMIC microstrip power amplifiers on s.i. SiC substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 473-477.	0.8	0
260	Recessed Gate Processing for GaN/AlGaN-HEMTs. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0
261	Gallium Nitride MMICs for mm-Wave Power Operation. Frequenz, 2009, 63, .	0.6	O
262	Device and Design Optimization for AlGaN/GaN X-Band-Power-Amplifiers with High Efficiency. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 31, 367.	1.2	0
263	Influence of Dry Etch Conditions on the Performance of Recessed Gate GaN/AlGaN HEMTs. ECS Transactions, 2010, 33, 61-66.	0.3	O
264	Design and modelling challenges for advanced class-S digital transmitters. , 2011, , .		0
265	AlGaN/GaN power amplifiers for ISM frequency applications. , 2011, , .		O
266	Microwave and Millimeter Wave Integrated Circuits MTT-6: The RF Core Chips of the 21st Century [From the Guest Editors' Desk]. IEEE Microwave Magazine, 2012, 13, 24-141.	0.7	0
267	GaN-based millimeter-wave monolithic integrated circuits. , 2012, , .		O
268	RF-MEMS variable matching networks and switches for multi-band and multi-mode GaN power amplifiers. International Journal of Microwave and Wireless Technologies, 2014, 6, 265-276.	1.5	0
269	Comparison of second-harmonic matching of AlGaN/GaN HEMTs at K-band. , 2014, , .		0
270	A novel broadband high-power source-pull/ load-pull concept for the HF- to UHF-range. , 2015, , .		0

#	Article	IF	Citations
271	With electroluminescence microcopy towards more reliable AlGaN/GaN transistors. , 2015, , .		О
272	A dual-band UMTS/LTE highly power-efficient Class-ABJ Doherty GaN PA. , 2015, , .		0
273	Examples of high-speed harmonic load pull investigations of high-efficiency GaN power transistors. , 2015, , .		O
274	Demonstration of an RF front-end based on GaN HEMT technology. , 2017, , .		0
275	Radiation aspects and performance of GaN power converters and RFICs for airborne and space applications. , 2017, , .		O
276	High-Power Asymmetrical Three-Way GaN Doherty Power Amplifier at C-Band Frequencies. , 2018, , .		0
277	High-Power Asymmetrical Three-Way GaN Doherty Power Amplifier at C-Band Frequencies. , 2018, , .		O
278	Performance evaluation of commercial GaN RF HEMTs as hybrid topology power switches. , 2018, , .		0
279	AlGaN/GaN High Electron-mobility Varactors on Silicon Substrate. , 2019, , .		О
280	A Review of Modeling Issues for RF Heterostructure Device Simulation., 2001,, 432-435.		0
281	Group lii-Nitride Microwave Monolithically Integrated Circuits. , 2017, , 141-201.		О
282	Study of Power Amplifier Harmonic Output Termination for two AlGaN/GaN Technologies at K-/Ka-Band. , 2020, , .		0
283	Harmonic-Injection Doherty Power Amplifiers with a High Small-Signal Gain. , 2022, , .		0
284	Bandwidth and Power Back-Off Performances of a Class-E $<$ sub $>$ M $<$ /sub $>$ /F $<$ sub $>$ 9 Nower Amplifier. , 2022, , .		0