
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3833520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Therapeutic Approaches for Conjunctival Melanoma—What We Know So Far and Where Therapy Is Potentially Heading: Focus on Lymphatic Vessels and Dendritic Cells. International Journal of Molecular Sciences, 2022, 23, 1478.	1.8	4
2	Tissue clearing may alter emission and absorption properties of common fluorophores. Scientific Reports, 2022, 12, 5551.	1.6	4
3	Multiscale and Multimodal Optical Imaging of the Ultrastructure of Human Liver Biopsies. Frontiers in Physiology, 2021, 12, 637136.	1.3	7
4	Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer. Molecular Cell, 2021, 81, 2094-2111.e9.	4.5	17
5	Upregulation of VCAM-1 in lymphatic collectors supports dendritic cell entry and rapid migration to lymph nodes in inflammation. Journal of Experimental Medicine, 2021, 218, .	4.2	37
6	Scalable robust graph and feature extraction for arbitrary vessel networks in large volumetric datasets. BMC Bioinformatics, 2021, 22, 346.	1.2	9
7	Rapid methods for the evaluation of fluorescent reporters in tissue clearing and the segmentation of large vascular structures. IScience, 2021, 24, 102650.	1.9	11
8	Vegfr3-tdTomato, a reporter mouse for microscopic visualization of lymphatic vessel by multiple modalities. PLoS ONE, 2021, 16, e0249256.	1.1	8
9	Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance. Nature Communications, 2020, 11, 1114.	5.8	41
10	Mature oligodendrocytes bordering lesions limit demyelination and favor myelin repair via heparan sulfate production. ELife, 2020, 9, .	2.8	16
11	Intravital imaging reveals systemic ezrin inhibition impedes cancer cell migration and lymph node metastasis in breast cancer. Breast Cancer Research, 2019, 21, 12.	2.2	36
12	Dendritic Cells and T Cells Interact Within Murine Afferent Lymphatic Capillaries. Frontiers in Immunology, 2019, 10, 520.	2.2	23
13	Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. Nature Communications, 2018, 9, 1511.	5.8	122
14	Distinct roles of <scp>VE</scp> adherin for development and maintenance of specific lymph vessel beds. EMBO Journal, 2018, 37, .	3.5	62
15	Three-Dimensional Visualization of the Lymphatic Vasculature. Methods in Molecular Biology, 2018, 1846, 1-18.	0.4	6
16	Multiple roles of lymphatic vessels in peripheral lymph node development. Journal of Experimental Medicine, 2018, 215, 2760-2777.	4.2	85
17	Molecular imaging of MMP activity discriminates unstable from stable plaque phenotypes in shear-stress induced murine atherosclerosis. PLoS ONE, 2018, 13, e0204305.	1.1	27
18	The guanine nucleotide exchange factor Arhgef7/βPix promotes axon formation upstream of TC10. Scientific Reports, 2018, 8, 8811.	1.6	20

#	Article	IF	CITATIONS
19	A qualitative comparison of ten tissue clearing techniques. Histology and Histopathology, 2018, 33, 181-199.	0.5	35
20	HPK1., 2018,, 2421-2427.		0
21	An Evolutionarily Conserved Role for Polydom/Svep1 During Lymphatic Vessel Formation. Circulation Research, 2017, 120, 1263-1275.	2.0	59
22	Maturation of Platelet Function During Murine Fetal Development In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1076-1086.	1.1	28
23	The role of fatty acid \hat{l}^2 -oxidation in lymphangiogenesis. Nature, 2017, 542, 49-54.	13.7	240
24	VIPAR, a quantitative approach to 3D histopathology applied to lymphatic malformations. JCI Insight, 2017, 2, .	2.3	33
25	Cx47 fine-tunes the handling of serum lipids but is dispensable for lymphatic vascular function. PLoS ONE, 2017, 12, e0181476.	1.1	17
26	Unperturbed Immune Function despite Mutation of C-Terminal Tyrosines in Syk Previously Implicated in Signaling and Activity Regulation. Molecular and Cellular Biology, 2017, 37, .	1.1	0
27	Toxic gain of function from mutant <scp>FUS</scp> protein is crucial to trigger cell autonomous motor neuron loss. EMBO Journal, 2016, 35, 1077-1097.	3.5	187
28	The Novel Oral Syk Inhibitor, Bl1002494, Protects Mice From Arterial Thrombosis and Thromboinflammatory Brain Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1247-1253.	1.1	62
29	Automated Segmentation of Immunostained Cell Nuclei in 3D Ultramicroscopy Images. Lecture Notes in Computer Science, 2016, , 105-116.	1.0	3
30	A novel family of fluorescent hypoxia sensors reveal strong heterogeneity in tumor hypoxia at the cellular level. EMBO Journal, 2016, 35, 102-113.	3.5	80
31	Receptor tyrosine kinase inhibitors: Are they real tumor killers?. International Journal of Cancer, 2016, 138, 540-554.	2.3	26
32	Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood, 2015, 125, 3769-3777.	0.6	73
33	Targeted downregulation of platelet CLEC-2 occurs through Syk-independent internalization. Blood, 2015, 125, 4069-4077.	0.6	34
34	Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nature Communications, 2015, 6, 7274.	5.8	42
35	The <scp>BAFF</scp> ling function of Syk in B ell homeostasis. EMBO Journal, 2015, 34, 838-840.	3.5	3
36	A novel model for ectopic, chronic, intravital multiphoton imaging of bone marrow vasculature and architecture in split femurs. Intravital, 2015, 4, e1066949.	2.0	2

#	Article	IF	CITATIONS
37	Suboptimal Bâ€cell antigen receptor signaling activity in vivo elicits germinal center counterselection mechanisms. European Journal of Immunology, 2015, 45, 603-611.	1.6	5
38	FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. Journal of Clinical Investigation, 2015, 125, 3861-3877.	3.9	186
39	The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis. ELife, 2015, 4, .	2.8	86
40	Modulation of synaptic function through the α-neurexin–specific ligand neurexophilin-1. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1274-83.	3.3	47
41	Fusing VE-Cadherin to α-Catenin Impairs Fetal Liver Hematopoiesis and Lymph but Not Blood Vessel Formation. Molecular and Cellular Biology, 2014, 34, 1634-1648.	1.1	19
42	Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy. Journal of Clinical Investigation, 2014, 124, 824-834.	3.9	78
43	Introductory Remarks. Advances in Anatomy, Embryology and Cell Biology, 2014, 214, 1-4.	1.0	3
44	Visualization of Lymphatic Vessel Development, Growth, and Function. Advances in Anatomy, Embryology and Cell Biology, 2014, 214, 167-186.	1.0	16
45	A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO Journal, 2013, 32, 629-644.	3.5	252
46	Hematopoietic progenitor kinase 1 (HPK1) is required for LFA-1–mediated neutrophil recruitment during the acute inflammatory response. Blood, 2013, 121, 4184-4194.	0.6	23
47	Altered BCR signalling quality predisposes to autoimmune disease and a pre-diabetic state. EMBO Journal, 2012, 31, 3363-3374.	3.5	33
48	CCR7-mediated LFA-1 functions in T cells are regulated by 2 independent ADAP/SKAP55 modules. Blood, 2012, 119, 777-785.	0.6	74
49	Identification of a clonally expanding haematopoietic compartment in bone marrow. EMBO Journal, 2012, 32, 219-230.	3.5	70
50	Mechanotransduction, PROX1, and FOXC2 Cooperate to Control Connexin37 and Calcineurin during Lymphatic-Valve Formation. Developmental Cell, 2012, 22, 430-445.	3.1	339
51	Intravital two-photon microscopy of lymphatic vessel development and function using a transgenic <i>Prox1</i> promoter-directed mOrange2 reporter mouse. Biochemical Society Transactions, 2011, 39, 1674-1681.	1.6	76
52	Migration inhibition of mammary epithelial cells by Syk is blocked in the presence of DDR1 receptors. Cellular and Molecular Life Sciences, 2011, 68, 3757-3770.	2.4	34
53	The role of chemokines and their receptors in angiogenesis. Cellular and Molecular Life Sciences, 2011, 68, 2811-2830.	2.4	102
54	Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO Journal, 2011, 30, 4157-4170.	3.5	222

#	Article	IF	CITATIONS
55	Characterization of Hematopoietic Progenitor Kinase 1 (HPK1) in Multiple Myeloma: a Player in Pathogenesis?,. Blood, 2011, 118, 3956-3956.	0.6	0
56	Hematopoietic progenitor kinase 1 is a critical component of prostaglandin E2-mediated suppression of the anti-tumor immune response. Cancer Immunology, Immunotherapy, 2010, 59, 419-429.	2.0	44
57	HPK1 competes with ADAP for SLPâ€76 binding and <i>via</i> Rap1 negatively affects Tâ€cell adhesion. European Journal of Immunology, 2010, 40, 3220-3225.	1.6	22
58	HPK1 Associates with SKAP-HOM to Negatively Regulate Rap1-Mediated B-Lymphocyte Adhesion. PLoS ONE, 2010, 5, e12468.	1.1	26
59	Regulation of Developmental Lymphangiogenesis by Syk+ Leukocytes. Developmental Cell, 2010, 18, 437-449.	3.1	78
60	Hematopoietic Progenitor Kinase 1 Is a Negative Regulator of Dendritic Cell Activation. Journal of Immunology, 2009, 182, 6187-6194.	0.4	48
61	Phosphorylation of CARMA1 by HPK1 is critical for NF-κB activation in T cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14508-14513.	3.3	60
62	VE-PTP controls blood vessel development by balancing Tie-2 activity. Journal of Cell Biology, 2009, 185, 657-671.	2.3	167
63	VE-PTP controls blood vessel development by balancing Tie-2 activity. Journal of Experimental Medicine, 2009, 206, i11-i11.	4.2	1
64	Lymphatic endothelial differentiation: start out with Sox - carry on with Prox. Genome Biology, 2008, 9, 243.	13.9	10
65	Caspase-cleaved HPK1 induces CD95L-independent activation-induced cell death in T and B lymphocytes. Blood, 2007, 110, 3968-3977.	0.6	40
66	Sustained JNK signaling by proteolytically processed HPK1 mediates IL-3 independent survival during monocytic differentiation. Cell Death and Differentiation, 2007, 14, 568-575.	5.0	36
67	Activation or suppression of NFκB by HPK1 determines sensitivity to activation-induced cell death. EMBO Journal, 2005, 24, 4279-4290.	3.5	71
68	Dual Interaction of JAM-C with JAM-B and αMβ2Integrin: Function in Junctional Complexes and Leukocyte Adhesion. Molecular Biology of the Cell, 2005, 16, 4992-5003.	0.9	109
69	Activation of Hematopoietic Progenitor Kinase 1 Involves Relocation, Autophosphorylation, and Transphosphorylation by Protein Kinase D1. Molecular and Cellular Biology, 2005, 25, 2364-2383.	1.1	57
70	Immortalization of Endothelial Cells. , 2004, , 63-72.		2
71	The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. Journal of Cell Science, 2003, 116, 3879-3891.	1.2	234
72	Signal transduction and co-stimulatory pathways. Transplant Immunology, 2002, 9, 69-82.	0.6	18

#	Article	IF	CITATIONS
73	ShcA and Grb2 mediate polyoma middle T antigen-induced endothelial transformation and Gab1 tyrosine phosphorylation. EMBO Journal, 2001, 20, 6327-6336.	3.5	45
74	Caspase-mediated Cleavage of Hematopoietic Progenitor Kinase 1 (HPK1) Converts an Activator of NFκB into an Inhibitor of NFκB. Journal of Biological Chemistry, 2001, 276, 14675-14684.	1.6	66
75	B Cell Adaptor Containing Src Homology 2 Domain (Bash) Links B Cell Receptor Signaling to the Activation of Hematopoietic Progenitor Kinase 1. Journal of Experimental Medicine, 2001, 194, 529-540.	4.2	61
76	Synergistic Regulation of Immunoreceptor Signaling by SLP-76-Related Adaptor Clnk and Serine/Threonine Protein Kinase HPK-1. Molecular and Cellular Biology, 2001, 21, 6102-6112.	1.1	49
77	The Adaptor Protein Gads (Grb2-Related Adaptor Downstream of Shc) Is Implicated in Coupling Hemopoietic Progenitor Kinase-1 to the Activated TCR. Journal of Immunology, 2000, 165, 1417-1426.	0.4	64
78	HPK1 Is Activated by Lymphocyte Antigen Receptors and Negatively Regulates AP-1. Immunity, 2000, 12, 399-408.	6.6	118
79	Activation of Hematopoietic Progenitor Kinase-1 by Erythropoietin. Blood, 1999, 93, 3347-3354.	0.6	48
80	The Syk Protein Tyrosine Kinase Is Essential for FcÎ ³ Receptor Signaling in Macrophages and Neutrophils. Molecular and Cellular Biology, 1998, 18, 4209-4220.	1.1	356
81	SH2/SH3 Adaptor Proteins Can Link Tyrosine Kinases to a Ste20-related Protein Kinase, HPK1. Journal of Biological Chemistry, 1997, 272, 27804-27811.	1.6	72
82	Novel components of mammalian stress-activated protein kinase cascades. Biochemical Society Transactions, 1997, 25, 491-498.	1.6	7
83	Generation of completely embryonic stem cell-derived mutant mice using tetraploid blastocyst injection. Mechanisms of Development, 1997, 62, 137-145.	1.7	121
84	Polyoma Middle T-induced Vascular Tumor Formation: The Role of the Plasminogen Activator/Plasmin System. Journal of Cell Biology, 1997, 137, 953-963.	2.3	65
85	Molecular cloning ofLSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Research, 1995, 23, 2127-2136.	6.5	219
86	Endothelial cell transformation by polyomavirus middle T antigen in mice lacking Src-related kinases. Current Biology, 1994, 4, 100-109.	1.8	46
87	Oncogenic Properties Of The Middle T Antigens Of Polyomaviruses. Advances in Cancer Research, 1994, 64, 125-157.	1.9	43
88	Rapid Methods for the Evaluation of Fluorescent Reporters in Tissue Clearing and the Segmentation of Large Vascular Structures. SSRN Electronic Journal, 0, , .	0.4	2
89	Hpk1. The AFCS-nature Molecule Pages, 0, , .	0.2	11