
Magnus P Jonsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3833283/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas. Advanced Materials, 2022, 34, e2107172.	21.0	32
2	Scalable Reflective Plasmonic Structural Colors from Nanoparticles and Cavity Resonances – the Cyanâ€Magentaâ€Yellow Approach. Advanced Optical Materials, 2022, 10, .	7.3	8
3	Organic Anisotropic Excitonic Optical Nanoantennas. Advanced Science, 2022, 9, .	11.2	8
4	Structurally Colored Cellulose Nanocrystal Films as Transreflective Radiative Coolers. ACS Nano, 2022, 16, 10156-10162.	14.6	36
5	Doped semiconducting polymer nanoantennas for tunable organic plasmonics. Communications Materials, 2022, 3, .	6.9	9
6	Charge transport in phthalocyanine thin-film transistors coupled with Fabry–Perot cavities. Journal of Materials Chemistry C, 2021, 9, 2368-2374.	5.5	8
7	Electrochromic Inorganic Nanostructures with High Chromaticity and Superior Brightness. Nano Letters, 2021, 21, 4343-4350.	9.1	42
8	Photoresponsive and Polarizationâ€5ensitive Structural Colors from Cellulose/Liquid Crystal Nanophotonic Structures. Advanced Materials, 2021, 33, e2101519.	21.0	31
9	Tunable Structural Color Images by UVâ€Patterned Conducting Polymer Nanofilms on Metal Surfaces. Advanced Materials, 2021, 33, e2102451.	21.0	34
10	Tunable Structural Color Images by UVâ€Patterned Conducting Polymer Nanofilms on Metal Surfaces (Adv. Mater. 33/2021). Advanced Materials, 2021, 33, 2170261.	21.0	5
11	Reflective and transparent cellulose-based passive radiative coolers. Cellulose, 2021, 28, 9383-9393.	4.9	42
12	Highly reflective optical nanocavities for structural coloration by combining broadband absorber and Fabry–Pérot effects. Journal of Optics (United Kingdom), 2021, 23, 015001.	2.2	6
13	Dynamically Tuneable Reflective Structural Coloration with Electroactive Conducting Polymer Nanocavities. Advanced Materials, 2021, 33, e2105004.	21.0	22
14	Solution-Processed Highly Efficient Semitransparent Organic Solar Cells with Low Donor Contents. ACS Applied Energy Materials, 2021, 4, 14335-14341.	5.1	19
15	Conductive polymer nanoantennas for dynamic organic plasmonics. Nature Nanotechnology, 2020, 15, 35-40.	31.5	70
16	Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. Journal of Materials Chemistry C, 2020, 8, 11687-11694.	5.5	45
17	Ultrasensitive electrolyte-assisted temperature sensor. Npj Flexible Electronics, 2020, 4, .	10.7	15
18	Noniridescent Biomimetic Photonic Microdomes by Inkjet Printing. Nano Letters, 2020, 20, 7243-7250.	9.1	29

MAGNUS P JONSSON

#	Article	IF	CITATIONS
19	Unraveling vertical inhomogeneity in vapour phase polymerized PEDOT:Tos films. Journal of Materials Chemistry A, 2020, 8, 18726-18734.	10.3	22
20	Heat Sensing: Thermodiffusionâ€Assisted Pyroelectrics—Enabling Rapid and Stable Heat and Radiation Sensing (Adv. Funct. Mater. 28/2019). Advanced Functional Materials, 2019, 29, 1970194.	14.9	1
21	Structural coloration by inkjet-printing of optical microcavities and metasurfaces. Journal of Materials Chemistry C, 2019, 7, 8698-8704.	5.5	13
22	Hybrid plasmonic metasurfaces. Journal of Applied Physics, 2019, 126, .	2.5	19
23	Organic Electrochemical Devices: Ion Electron–Coupled Functionality in Materials and Devices Based on Conjugated Polymers (Adv. Mater. 22/2019). Advanced Materials, 2019, 31, 1970160.	21.0	2
24	Twinning Lignosulfonate with a Conducting Polymer via Counterâ€lon Exchange for Largeâ€Scale Electrical Storage. Advanced Sustainable Systems, 2019, 3, 1900039.	5.3	17
25	On the anomalous optical conductivity dispersion of electrically conducting polymers: ultra-wide spectral range ellipsometry combined with a Drude–Lorentz model. Journal of Materials Chemistry C, 2019, 7, 4350-4362.	5.5	36
26	Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles. Nature Communications, 2019, 10, 1093.	12.8	174
27	Thermodiffusionâ€Assisted Pyroelectrics—Enabling Rapid and Stable Heat and Radiation Sensing. Advanced Functional Materials, 2019, 29, 1900572.	14.9	14
28	Greyscale and Paper Electrochromic Polymer Displays by UV Patterning. Polymers, 2019, 11, 267.	4.5	23
29	Electric Transport Properties in PEDOT Thin Films. , 2019, , 45-128.		12
30	PEDOT ellulose Gas Diffusion Electrodes for Disposable Fuel Cells. Advanced Sustainable Systems, 2019, 3, 1900097.	5.3	3
31	Optical properties of plasmonic nanopore arrays prepared by electron beam and colloidal lithography. Nanoscale Advances, 2019, 1, 4282-4289.	4.6	10
32	Ion Electron–Coupled Functionality in Materials and Devices Based on Conjugated Polymers. Advanced Materials, 2019, 31, e1805813.	21.0	118
33	Active control of plasmonic colors: emerging display technologies. Reports on Progress in Physics, 2019, 82, 024501.	20.1	46
34	Plasmonic fanoholes: on the gradual transition from suppressed to enhanced optical transmission through nanohole arrays in metal films of increasing film thickness. Optical Materials Express, 2019, 9, 1404.	3.0	19
35	Hybrid Plasmonic and Pyroelectric Harvesting of Light Fluctuations. Advanced Optical Materials, 2018, 6, 1701051.	7.3	15
36	Strong Plasmon–Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces. ACS Photonics, 2018, 5, 4046-4055.	6.6	37

Magnus P Jonsson

#	Article	IF	CITATIONS
37	Conducting Polymer Electrocatalysts for Protonâ€Coupled Electron Transfer Reactions: Toward Organic Fuel Cells with Forest Fuels. Advanced Sustainable Systems, 2018, 2, 1800021.	5.3	18
38	Blowin' in the Wind - a Source of Energy: Hybrid Plasmonic and Pyroelectric Harvesting of Light Fluctuations (Advanced Optical Materials 11/2018). Advanced Optical Materials, 2018, 6, 1870043.	7.3	0
39	Ionic Thermoelectric Figure of Merit for Charging of Supercapacitors. Advanced Electronic Materials, 2017, 3, 1700013.	5.1	146
40	In vivo polymerization and manufacturing of wires and supercapacitors in plants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2807-2812.	7.1	84
41	Oxygen-induced doping on reduced PEDOT. Journal of Materials Chemistry A, 2017, 5, 4404-4412.	10.3	97
42	Thermoplasmonic Semitransparent Nanohole Electrodes. Nano Letters, 2017, 17, 3145-3151.	9.1	40
43	Infrared electrochromic conducting polymer devices. Journal of Materials Chemistry C, 2017, 5, 5824-5830.	5.5	94
44	Hot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles. ACS Photonics, 2017, 4, 1146-1152.	6.6	97
45	Low-temperature growth of polyethylene glycol-doped BiZn2VO6 nanocompounds with enhanced photoelectrochemical properties. Journal of Materials Chemistry A, 2017, 5, 1112-1119.	10.3	6
46	Solar Transparent Radiators by Optical Nanoantennas. Nano Letters, 2017, 17, 6766-6772.	9.1	35
47	Switchable Plasmonic Metasurfaces with High Chromaticity Containing Only Abundant Metals. Nano Letters, 2017, 17, 7033-7039.	9.1	95
48	The Role of Size and Dimerization of Decorating Plasmonic Silver Nanoparticles on the Photoelectrochemical Solar Water Splitting Performance of BiVO ₄ Photoanodes. ChemNanoMat, 2016, 2, 739-747.	2.8	33
49	Photoconductive zinc oxide-composite paper by pilot paper machine manufacturing. Flexible and Printed Electronics, 2016, 1, 044003.	2.7	8
50	Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. Journal of Materials Chemistry A, 2016, 4, 17891-17912.	10.3	165
51	Freestanding electrochromic paper. Journal of Materials Chemistry C, 2016, 4, 9680-9686.	5.5	53
52	Direct observation of DNA knots using a solid-state nanopore. Nature Nanotechnology, 2016, 11, 1093-1097.	31.5	214
53	Ionic thermoelectric supercapacitors. Energy and Environmental Science, 2016, 9, 1450-1457.	30.8	312
54	Temperature dependence of DNA translocations through solid-state nanopores. Nanotechnology, 2015, 26, 234004.	2.6	38

MAGNUS P JONSSON

#	Article	IF	CITATIONS
55	Photoresistance Switching of Plasmonic Nanopores. Nano Letters, 2015, 15, 776-782.	9.1	38
56	Observation of DNA Knots Using Solid-State Nanopores. Biophysical Journal, 2015, 108, 166a.	0.5	6
57	Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. ACS Nano, 2015, 9, 10598-10611.	14.6	148
58	Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown. Nano Letters, 2015, 15, 7112-7117.	9.1	61
59	DNA Translocations through Solid-State Plasmonic Nanopores. Nano Letters, 2014, 14, 6917-6925.	9.1	133
60	Plasmon-enhanced four-wave mixing by nanoholes in thin gold films. Optics Letters, 2014, 39, 1001.	3.3	9
61	Periodic Modulations of Optical Tweezers Near Solidâ€ S tate Membranes. Small, 2013, 9, 679-684.	10.0	6
62	Plasmonic Nanopore for Electrical Profiling of Optical Intensity Landscapes. Nano Letters, 2013, 13, 1029-1033.	9.1	91
63	High throughput fabrication of plasmonic nanostructures in nanofluidic pores for biosensing applications. Nanotechnology, 2012, 23, 415304.	2.6	15
64	Material-Selective Surface Chemistry for Nanoplasmonic Sensors: Optimizing Sensitivity and Controlling Binding to Local Hot Spots. Nano Letters, 2012, 12, 873-879.	9.1	65
65	Nanoplasmonic Sensing Combined with Artificial Cell Membranes. , 2012, , 59-82.		6
66	Performance of Nanoplasmonic Biosensors. , 2012, , 231-265.		5
67	Rapid manufacturing of low-noise membranes for nanopore sensors by <i>trans</i> -chip illumination lithography. Nanotechnology, 2012, 23, 475302.	2.6	31
68	Plasmonic Sensing Using Nanodome Arrays Fabricated by Soft Nanoimprint Lithography. Journal of Physical Chemistry C, 2011, 115, 15234-15239.	3.1	15
69	Locally Functionalized Short-Range Ordered Nanoplasmonic Pores for Bioanalytical Sensing. Analytical Chemistry, 2010, 82, 2087-2094.	6.5	105
70	Nanoplasmonic biosensing with on-chip electrical detection. Biosensors and Bioelectronics, 2010, 26, 1131-1136.	10.1	37
71	High-Performance Biosensing Using Arrays of Plasmonic Nanotubes. ACS Nano, 2010, 4, 2210-2216.	14.6	140
72	Sealing of Submicrometer Wells by a Shear-Driven Lipid Bilayer. Nano Letters, 2010, 10, 1900-1906.	9.1	42

MAGNUS P JONSSON

#	Article	IF	CITATIONS
73	Improving the Limit of Detection of Nanoscale Sensors by Directed Binding to High-Sensitivity Areas. ACS Nano, 2010, 4, 2167-2177.	14.6	112
74	High-Resolution Microspectroscopy of Plasmonic Nanostructures for Miniaturized Biosensing. Analytical Chemistry, 2009, 81, 6572-6580.	6.5	80
75	Specific Selfâ€Assembly of Single Lipid Vesicles in Nanoplasmonic Apertures in Gold. Advanced Materials, 2008, 20, 1436-1442.	21.0	61
76	A Method Improving the Accuracy of Fluorescence Recovery after Photobleaching Analysis. Biophysical Journal, 2008, 95, 5334-5348.	0.5	204
77	Supported lipid bilayers, tethered lipid vesicles, and vesicle fusion investigated using gravimetric, plasmonic, and microscopy techniques. Biointerphases, 2008, 3, FA108-FA116.	1.6	23
78	Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films (Review). Biointerphases, 2008, 3, FD30-FD40.	1.6	66
79	Synchronized Quartz Crystal Microbalance and Nanoplasmonic Sensing of Biomolecular Recognition Reactions. ACS Nano, 2008, 2, 2174-2182.	14.6	61
80	Simultaneous Nanoplasmonic and Quartz Crystal Microbalance Sensing: Analysis of Biomolecular Conformational Changes and Quantification of the Bound Molecular Mass. Analytical Chemistry, 2008, 80, 7988-7995.	6.5	77
81	Supported Lipid Bilayer Formation and Lipid-Membrane-Mediated Biorecognition Reactions Studied with a New Nanoplasmonic Sensor Template. Nano Letters, 2007, 7, 3462-3468.	9.1	139