Naoyuki Amemiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3832584/publications.pdf Version: 2024-02-01

	168829	214428
4,381	31	50
citations	h-index	g-index
271	271	1384
docs citations	times ranked	citing authors
	4,381 citations 271 docs citations	4,38131citationsh-index271271docs citations1000000000000000000000000000000000000

#	Article	IF	CITATIONS
1	Thermal Runaway of Conduction-Cooled Monofilament and Multifilament Coated Conductors. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-9.	1.1	6
2	Impact of Copper Thickness, Conductor Width, and Number of Striations on Coupling Loss Characteristics of Copper-Plated Multifilament-Coated Conductors. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-12.	1.1	9
3	Magnetic Field Drifts of Small HTS Dipole Magnet Under Repeated Excitation. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-6.	1.1	3
4	Simplified Numerical Electromagnetic Field Analysis Method of Coils Wound With Spiral Coated-Conductor Cables. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	0
5	AC Loss Simulation in HTS Coil Windings Coupled With an Iron Core. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	4
6	Effective reduction of magnetisation losses in copper-plated multifilament coated conductors using spiral geometry. Superconductor Science and Technology, 2022, 35, 025003.	1.8	12
7	Magnetization Loss Measurements of Spiral Copper-Plated Multifilament Coated Conductors With Various Filament and Conductor Widths. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-6.	1.1	3
8	Current-Sharing Between Filaments and Voltage – Current Characteristics of Copper-Plated Multifilament Coated Conductors. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	5
9	Measurements of Coupling Time Constants and Geometry Factors of Coupling Losses in Spiral Copper-Plated Multifilament Coated Conductors. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	3
10	A Novel Modeling Method for No-Load Saturation Characteristics of Synchronous Machines Using Finite Element Analysis. IEEE Transactions on Magnetics, 2021, 57, 1-5.	1.2	3
11	Finite-Element Analysis for Magnetic Flux in End Region of Synchronous Machine Using End-Winding Model. IEEE Transactions on Magnetics, 2021, 57, 1-6.	1.2	8
12	Shielding currents in multifilament coated conductors wound into pancake coils and layer-wound coils. Superconductor Science and Technology, 2021, 34, 105009.	1.8	5
13	Quench Experiments of Conduction-Cooled Coated Conductors With Various Copper-Stabilizer Thicknesses. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	4
14	Development of a REBCO Magnet for Accelerator. TEION KOGAKU (Journal of Cryogenics and) Tj ETQq0 0 0 rgf	3T /Overloc	k 10 Tf 50 22
15	AC Loss and Shielding-Current-Induced Field in a Coated-Conductor Test Magnet for Accelerator Applications under Repeated Excitations. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	4
16	Reduction of AC Loss in HTS Coils of Superferric Magnets for Rapid-Cycling Synchrotrons by Changing Cross-Section of Coils and Iron Yoke Geometry. IEEE Transactions on Applied	1.1	4

16	Changing Cross-Section of Coils and Iron Yoke Geometry. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	4	
17	Coupling Time Constant Measurements of Spirally-Twisted Striated Coated Conductors With Finite Transverse Conductance Between Filaments. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	9	
18	Simplified Electromagnetic Modelling of Accelerator Magnets Wound With Conductor on Round	1.1	7	

Core Wires for AC Loss Calculations. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5. 18

#	Article	IF	CITATIONS
19	Coupling time constants and ac loss characteristics of spiral copper-plated striated coated-conductor cables (SCSC cables). Superconductor Science and Technology, 2020, 33, 055008.	1.8	14
20	Overview of S-Innovation Project on Fundamental Technology of HTS Accelerator Magnets. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2020, 55, 89-97.	0.1	0
21	Mitigation of Shielding-Current-Induced Fields (SCIFs) in HTS Magnets for Accelerator Systems. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2020, 55, 109-116.	0.1	1
22	Fabrication of a Model Magnet Using Coated Conductors for FFAG Accelerators. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2020, 55, 98-102.	0.1	1
23	Large-scale electromagnetic field analyses of coils wound with coated conductors using a current-vector-potential formulation with a thin-strip approximation. Superconductor Science and Technology, 2019, 32, 094002.	1.8	14
24	Test of Cryocooler-Cooled RE-123 Magnet on HIMAC Beam Line in S-Innovation Program. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	3
25	Development of an HTS Accelerator Magnet With REBCO Coils for Tests at HIMAC Beam Line. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	12
26	Shielding current in a copper-plated multifilament coated conductor wound into a single pancake coil and exposed to a normal magnetic field. Superconductor Science and Technology, 2019, 32, 115008.	1.8	15
27	Conceptual Study on lighter and more compact transmission cable systems for Hybrid Aircrafts. Journal of Physics: Conference Series, 2019, 1293, 012073.	0.3	0
28	Experimental Study on Quench Detection and Protection Conditions of Copper-Stabilized Coated Conductors Using Short Samples. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-11.	1.1	5
29	Feasibility Study on a Fault Current Limiter Consisting of Coated Conductors With Copper Fins for Improved Cooling by Liquid Nitrogen. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	1
30	AC Loss Measurement in HTS Coil Windings Coupled With Iron Core. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	11
31	AC Losses in HTS Coils of Superferric Dipole and Combined-Function Magnets. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	8
32	AC Loss Calculation of a Cosine-Theta Dipole Magnet Wound With Coated Conductors by 3D Modeling. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	8
33	Coupling time constants of striated and copper-plated coated conductors and the potential of striation to reduce shielding-current-induced fields in pancake coils. Superconductor Science and Technology, 2018, 31, 025007.	1.8	30
34	Numerical Modeling of Dynamic Loss in HTS-Coated Conductors Under Perpendicular Magnetic Fields. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-6.	1.1	26
35	The dynamic resistance of YBCO coated conductor wire: effect of DC current magnitude and applied field orientation. Superconductor Science and Technology, 2018, 31, 035002.	1.8	46
36	Application of Hierarchical Matrices to Large-Scale Electromagnetic Field Analyses of Coils Wound With Coated Conductors. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	8

#	Article	IF	CITATIONS
37	AC Loss Characteristics in REBCO Coil Assemblies With Different Geometries and Conductors. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	16
38	Influence of E–J Characteristics of Coated Conductors and Field Ramp-Up Rates on Shielding-Current-Induced Fields of Magnet. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	6
39	AC loss simulation in a HTS 3-Phase 1â€⁻MVA transformer using H formulation. Cryogenics, 2018, 94, 14-21.	0.9	37
40	Numerical modelling of dynamic resistance in high-temperature superconducting coated-conductor wires. Superconductor Science and Technology, 2018, 31, 074003.	1.8	74
41	Dynamic Resistance Measurements in a GdBCO-Coated Conductor. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	26
42	Hysteretic Rotating Characteristics of an HTS Induction/Synchronous Motor. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	12
43	Experimental and Analytical Studies on Highly Efficient Regenerative Characteristics of a 20-kW Class HTS Induction/Synchronous Motor. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	11
44	Fabrication and Excitation of a Model Magnet Using Coated Conductors for Spiral Sector FFAG Accelerators. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	2
45	Field Quality Measurement of an HTS Magnet for a Rotating Gantry. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	8
46	Dynamic resistance of a high- <i>T</i> _c coated conductor wire in a perpendicular magnetic field at 77 K. Superconductor Science and Technology, 2017, 30, 03LT01.	1.8	80
47	AC Loss Measurements in a Hybrid REBCO/BSCCO Coil Assembly. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-7.	1.1	12
48	Corrections to "Design and Magnetic Field Analyses of Spiral Sector Magnet in an FFAG Accelerator for Carbon Cancer Therapy―[Jun 16 Art. no. 4402206]. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-1.	1.1	0
49	Test of 6-kVA Three-Phase Flux Transfer-Type Current-Limiting Transformer. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3549-3553.	0.8	2
50	Design and Test Results of Superconducting Magnet for Heavy-Ion Rotating Gantry. Journal of Physics: Conference Series, 2017, 871, 012083.	0.3	9
51	Study on AC loss measurements of HTS power cable for standardizing. Journal of Physics: Conference Series, 2017, 897, 012021.	0.3	4
52	Research and Development of the Coil System for a Beam Transport and Irradiation Line. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2017, 52, 234-243.	0.1	0
53	Development of HTS Magnet for Rotating Gantry. Physics Procedia, 2016, 81, 162-165.	1.2	4
54	Thermal Stability of Conduction-Cooled HTS Magnets for Rotating Gantry. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.1	5

#	Article	IF	CITATIONS
55	Contactless magnetic manipulation of magnetic particles in a fluid. Journal of Magnetism and Magnetic Materials, 2016, 411, 68-78.	1.0	14
56	Influence of Manufacturing Accuracy on Magnetic Field Distribution in Magnet for HTS Rotating Gantry. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.1	2
57	Influence of magnetization on field quality in cosine-theta and block design dipole magnets wound with coated conductors. Superconductor Science and Technology, 2016, 29, 045012.	1.8	6
58	AC loss measurements in HTS coil assemblies with hybrid coil structures. Superconductor Science and Technology, 2016, 29, 095011.	1.8	24
59	Magnetisation and field quality of a cosine-theta dipole magnet wound with coated conductors for rotating gantry for hadron cancer therapy. Superconductor Science and Technology, 2016, 29, 024006.	1.8	35
60	Design and Experimental Study of a Model Magnet for Spiral-Sector FFAG Accelerators. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	7
61	Design and Magnetic Field Analyses of Spiral Sector Magnet in an FFAG Accelerator for Carbon Cancer Therapy. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-6.	1.1	4
62	Experimental and Analytical Studies on Variable Speed Control of High-Temperature Superconducting Induction/Synchronous Motor. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	11
63	Design of a Cosine-theta Dipole Magnet Wound with Coated Conductors Considering their Deformation at Coil ends During Winding Process. Physics Procedia, 2015, 67, 776-780.	1.2	12
64	Design of Conduction-cooled HTS Coils for a Rotating Gantry. Physics Procedia, 2015, 67, 879-884.	1.2	13
65	Temporal behaviour of multipole components of the magnetic field in a small dipole magnet wound with coated conductors. Superconductor Science and Technology, 2015, 28, 035003.	1.8	31
66	Experimental Results of 275-kV 3-kA REBCO HTS Power Cable. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	23
67	Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	18
68	Fabrication of Threeâ€Ðimensional HTS Coils for Accelerator Magnets. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.1	4
69	A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging. Scientific Reports, 2015, 5, 9194.	1.6	40
70	Influence of Geometrical Configurations of HTS Roebel Cables on Their AC Losses. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	5
71	Tremendous Enhancement of Torque Density in HTS Induction/Synchronous Machine for Transportation Equipments. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.1	35
72	Efficient and Practical Models for Numerical Electromagnetic Field Analyses of Three-Dimensional-Shape Coils Wound With Coated Conductor. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	10

#	Article	IF	CITATIONS
73	Impact of flux gap upon dynamic resistance of a rotating HTS flux pump. Superconductor Science and Technology, 2015, 28, 115008.	1.8	84
74	Magnetic field harmonics measurements of conduction-cooled dipole magnet consisting of four race-track coils wound with coated conductors. IEEE Transactions on Applied Superconductivity, 2014, , 1-1.	1.1	2
75	Dynamic resistance of a high- <i>Tc</i> superconducting flux pump. Applied Physics Letters, 2014, 105, .	1.5	138
76	Alternating current loss characteristics of a Roebel cable consisting of coated conductors and a three-dimensional structure. Superconductor Science and Technology, 2014, 27, 035007.	1.8	39
77	Contactless grasp of a magnetic particle in a fluid and its application to quantifications of forces affecting its behavior. Journal of Magnetism and Magnetic Materials, 2014, 353, 82-89.	1.0	1
78	Electromagnetic Field Analyses of REBCO Roebel Cables Wound Into Coil Configurations. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	5
79	A Novel Magnet Design Using Coated Conductor for Spiral Sector FFAG Accelerators. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	5
80	Experimental Comparison of AC Loss in REBCO Roebel Cables Consisting of Six Strands and Ten Strands. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	13
81	The Behavior of Nano- and Micro-Magnetic Particles Under a High Magnetic Field Using a Superconducting Magnet. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	1
82	Development of Curved Combined-Function Superconducting Magnets for a Heavy-Ion Rotating-Gantry. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	21
83	Potential for Torque Density Maximization of HTS Induction/Synchronous Motor by Use of Superconducting Reluctance Torque. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.1	16
84	The scaling of transport AC losses in Roebel cables with varying strand parameters. Superconductor Science and Technology, 2014, 27, 075007.	1.8	19
85	Longitudinal inhomogeneity of DC current transport properties in Gd-system HTS tapes – Statistical approach for system design. Cryogenics, 2014, 63, 17-24.	0.9	15
86	Magnetic Field Design of Combined-function Magnets Wound with Coated Conductors. Physics Procedia, 2013, 45, 237-240.	1.2	4
87	Development of Saddle-Shaped Coils Using Coated Conductors for Accelerator Magnets. IEEE Transactions on Applied Superconductivity, 2013, 23, 4100404-4100404.	1.1	17
88	Calculated Characteristics of HTS Induction/Synchronous Machine Below and Above Its Critical Temperature. IEEE Transactions on Applied Superconductivity, 2013, 23, 5201705-5201705.	1.1	12
89	Development of 66 kV and 275 kV Class REBCO HTS Power Cables. IEEE Transactions on Applied Superconductivity, 2013, 23, 5401405-5401405.	1.1	33
90	Design and Evaluation of 275 kV-3 kA HTS Power Cable. Physics Procedia, 2013, 45, 277-280.	1.2	15

#	Article	IF	CITATIONS
91	AC loss reduction of outer-diameter-fixed superconducting power transmission cables using narrow coated conductors. Physica C: Superconductivity and Its Applications, 2013, 484, 217-222.	0.6	10
92	Ac loss analyses of superconducting power transmission cables considering their three-dimensional geometries. Physica C: Superconductivity and Its Applications, 2013, 484, 148-152.	0.6	7
93	Development of a superconducting rotating-gantry for heavy-ion therapy. Nuclear Instruments & Methods in Physics Research B, 2013, 317, 793-797.	0.6	24
94	Controllability of HTS Induction/Synchronous Machine for Variable Speed Control. IEEE Transactions on Applied Superconductivity, 2013, 23, 5202505-5202505.	1.1	10
95	Total AC loss measurements in a six strand Roebel cable carrying an AC current in an AC magnetic field. Superconductor Science and Technology, 2013, 26, 035014.	1.8	18
96	Progress of Research and Development of Fundamental Technologies for Accelerator Magnets Using Coated Conductors. IEEE Transactions on Applied Superconductivity, 2013, 23, 4601905-4601905.	1.1	20
97	The Dependence of Transport AC Loss on Temperature and DC Parallel Magnetic Field in an Eight-Strand YBCO Roebel Cable. IEEE Transactions on Applied Superconductivity, 2013, 23, 5402604-5402604.	1.1	4
98	Status of a 275 kV Class REBCO Superconducting Cable Development. IEEE Transactions on Applied Superconductivity, 2013, 23, 5402804-5402804.	1.1	9
99	Challenge to Functional, Efficient, and Compact Accelerator Systems using High <i>T</i> _c Superconductors. TEION KOGAKU (Journal of Cryogenics) Tj ETQq1 I	1 007.84314	4 rgBT /Overl
100	Three-dimensional model for numerical electromagnetic field analyses of coated superconductors and its application to Roebel cables. Superconductor Science and Technology, 2012, 25, 095011.	1.8	42
101	Magnetic Field Design of Coil-Dominated Magnets Wound With Coated Conductors. IEEE Transactions on Applied Superconductivity, 2012, 22, 4901705-4901705.	1.1	17
102	Trial Test of Fully HTS Induction/Synchronous Machine for Next Generation Electric Vehicle. IEEE Transactions on Applied Superconductivity, 2012, 22, 5200904-5200904.	1.1	59
103	Performance of Induction/Synchronous Motor Having \${m MgB}_{2}\$ Cage Windings for Liquid Hydrogen Circulation Pump. IEEE Transactions on Applied Superconductivity, 2012, 22, 5200404-5200404.	1.1	12
104	AC loss measurements in pancake coils wound with 2G tapes and Roebel cable: dependence on spacing between turns/strands. Superconductor Science and Technology, 2012, 25, 035002.	1.8	27
105	Development and fundamental study on a superconducting induction/synchronous motor incorporated with MgB ₂ cage windings. Superconductor Science and Technology, 2012, 25, 014004.	1.8	17
106	Focus section on superconducting power systems. Superconductor Science and Technology, 2012, 25, 010301-010301.	1.8	0
107	Transport AC Loss Measurements in Single- and Two-Layer Parallel Coated Conductor Arrays With Low Turn Numbers. IEEE Transactions on Applied Superconductivity, 2012, 22, 8200306-8200306.	1.1	13
108	Fabrication of YBCO Small Test Coils for Accelerator Magnet Development. IEEE Transactions on Applied Superconductivity, 2012, 22, 4101904-4101904.	1.1	12

#	Article	IF	CITATIONS
109	Design of a superconducting rotating gantry for heavy-ion therapy. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	89
110	R&D Efforts Towards High Field Accelerator Magnets at KEK. IEEE Transactions on Applied Superconductivity, 2012, 22, 4003205-4003205.	1.1	5
111	Measurements of Magnetic Field Harmonics in Superconductor Coil Wound by Surface Winding Technology. IEEE Transactions on Applied Superconductivity, 2012, 22, 9000404-9000404.	1.1	5
112	Design and Evaluation of 66 kV-class "3-in-One―HTS Cable Using REBCO Wires. Physics Procedia, 2012, 36, 849-854.	1.2	6
113	Development of REBCO HTS Power Cables. Physics Procedia, 2012, 36, 1153-1158.	1.2	11
114	Research and development of fundamental technologies for accelerator magnets using high Tc superconductors. Physica C: Superconductivity and Its Applications, 2012, 482, 74-79.	0.6	25
115	Development of 66kV class REBCO superconducting cable. Physics Procedia, 2012, 27, 364-367.	1.2	1
116	Fundamental Study on Saving Energy for Electrified Railway System Applying High Temperature Superconductor Motor and Energy Storage System. IEEJ Transactions on Power and Energy, 2012, 132, 398-406.	0.1	0
117	A high temperature superconducting induction/synchronous motor with a ten-fold improvement in torque density. Superconductor Science and Technology, 2011, 24, 015014.	1.8	20
118	Transport AC Loss Characteristics of a Five Strand YBCO Roebel Cable With Magnetic Substrate. IEEE Transactions on Applied Superconductivity, 2011, 21, 3289-3292.	1.1	4
119	Design and Evaluation of 66 kV Class HTS Power Cable Using REBCO Wires. IEEE Transactions on Applied Superconductivity, 2011, 21, 1009-1012.	1.1	12
120	Model Cable Tests for a 275 kV 3 kA HTS Power Cable. IEEE Transactions on Applied Superconductivity, 2011, 21, 976-979.	1.1	24
121	Effects of Lateral-Tailoring of Coated Conductor for Ac Loss Reduction of Superconducting Power Transmission Cables. IEEE Transactions on Applied Superconductivity, 2011, 21, 943-946.	1.1	15
122	Effects of Unevenly Distributed Critical Currents and Damaged Coated Conductors to AC Losses of Superconducting Power Transmission Cables. IEEE Transactions on Applied Superconductivity, 2011, 21, 953-956.	1.1	14
123	Analytic Evaluation of HTS Induction Motor for Electric Rolling Stock. IEEE Transactions on Applied Superconductivity, 2011, 21, 1123-1126.	1.1	15
124	Magnetic Field Design of Dipole Magnet Wound With Coated Conductor Considering Its Current Transport Characteristics. IEEE Transactions on Applied Superconductivity, 2011, 21, 1833-1837.	1.1	19
125	Lateral critical current density distributions degraded near edges of coated conductors through cutting processes and their influence on ac loss characteristics of power transmission cables. Physica C: Superconductivity and Its Applications, 2011, 471, 990-994.	0.6	20
126	Progress of 275kV–3kA YBCO HTS cable. Physica C: Superconductivity and Its Applications, 2011, 471, 1274-1278.	0.6	30

#	Article	IF	CITATIONS
127	Design and evaluation of 66kV-class HTS power cable using REBCO wires. Physica C: Superconductivity and Its Applications, 2011, 471, 1279-1282.	0.6	8
128	The dependence of AC loss characteristics on the spacing between strands in YBCO Roebel cables. Superconductor Science and Technology, 2011, 24, 065005.	1.8	25
129	Model for electromagnetic field analysis of superconducting power transmission cable comprising spiraled coated conductors. Superconductor Science and Technology, 2011, 24, 119501.	1.8	10
130	Model for electromagnetic field analysis of superconducting power transmission cable comprising spiraled coated conductors. Superconductor Science and Technology, 2011, 24, 085014.	1.8	32
131	Ac loss reduction of multilayer superconducting power transmission cables by using narrow coated conductors. Superconductor Science and Technology, 2011, 24, 065013.	1.8	19
132	Fundamental Study on Improvement of Power Load Characteristics Applying High Temperature Superconductor Motor for Electrified Railway. IEEJ Transactions on Power and Energy, 2011, 131, 493-501.	0.1	2
133	CHATS-2008: Workshop on computation of thermo-hydraulic transients in superconductors, October 29–November 1, 2008, KEK, high energy accelerator research organization, Tsukuba, Ibaraki, Japan. Cryogenics, 2010, 50, 127-128.	0.9	0
134	AC loss characteristics of superconducting power transmission cables: gap effect andJcdistribution effect. Superconductor Science and Technology, 2010, 23, 115003.	1.8	27
135	Transport AC loss characteristics of a nine strand YBCO Roebel cable. Superconductor Science and Technology, 2010, 23, 025028.	1.8	31
136	Flux Pumping Effect of HTS Films in a Traveling Magnetic Field. IEEE Transactions on Applied Superconductivity, 2010, 20, 1033-1036.	1.1	36
137	Visualization of magnetic microparticles in liquid and control of their motion using dynamic magnetic field. Journal of Applied Physics, 2010, 107, 09B521.	1.1	3
138	Ac losses in two-layer superconducting power transmission cables consisting of coated conductors with a magnetic substrate. Superconductor Science and Technology, 2010, 23, 014022.	1.8	15
139	Multi-Pole Components of Magnetic Field in Dipole Magnets Wound With High \$T_{m c}\$ Superconductor Tape and Feasibility of Their Accelerator Applications. IEEE Transactions on Applied Superconductivity, 2010, 20, 364-367.	1.1	9
140	AC Losses in High Tc Superconductors. TEION KOGAKU (Journal of Cryogenics and Superconductivity) Tj ETQq0	0 0 rgBT /0	Overlock 10 T
141	Development of a 10 m long 1 kA 66/77 kV YBCO HTS cable with low AC loss and a joint with low electrical resistance. Superconductor Science and Technology, 2009, 22, 085003.	1.8	14
142	Transport AC loss measurement of a five strand YBCO Roebel cable. Superconductor Science and Technology, 2009, 22, 095002.	1.8	30
143	Development of (RE)BCO cables for HTS power transmission lines. Physica C: Superconductivity and Its Applications, 2009, 469, 1688-1692.	0.6	16
144	Development of 6.6kV/600A superconducting fault current limiter using coated conductors. Physica	0.6	23

C: Superconductivity and Its Applications, 2009, 469, 1740-1744.

#	Article	IF	CITATIONS
145	Development of 1m HTS conductor using YBCO on textured metal substrate. Physica C: Superconductivity and Its Applications, 2009, 469, 1693-1696.	0.6	2
146	Transport losses in polygonal assemblies of coated conductors with textured-metal substrate. Physica C: Superconductivity and Its Applications, 2009, 469, 1427-1431.	0.6	3
147	AC loss characteristics of copper-stabilized YBCO coated conductor. Cryogenics, 2009, 49, 280-285.	0.9	3
148	Design and Experimental Results of Three-Phase Superconducting Fault Current Limiter Using Highly-Resistive YBCO Tapes. IEEE Transactions on Applied Superconductivity, 2009, 19, 1956-1959.	1.1	11
149	Influence of substrate magnetism of coated conductors on critical current distribution measurement using magnetic knife method. Physica C: Superconductivity and Its Applications, 2008, 468, 1688-1692.	0.6	4
150	Development of YBCO HTS cable with low AC loss. Physica C: Superconductivity and Its Applications, 2008, 468, 2037-2040.	0.6	13
151	Transport losses in single and assembled coated conductors with textured-metal substrate with reduced magnetism. Physica C: Superconductivity and Its Applications, 2008, 468, 1718-1722.	0.6	37
152	Short circuit experiment on an FCL coil wound with YBCO tape with a high-resistance stabilizing layer. Journal of Physics: Conference Series, 2008, 97, 012308.	0.3	0
153	Magnetic field generated by shielding current in high <i>T</i> _c superconducting coils for NMR magnets. Superconductor Science and Technology, 2008, 21, 095001.	1.8	126
154	Numerical calculation of AC losses in multi-layer superconducting cables composed of coated conductors. Superconductor Science and Technology, 2008, 21, 025013.	1.8	27
155	The dependence of AC loss characteristics on the space in stacked YBCO conductors. Superconductor Science and Technology, 2008, 21, 015020.	1.8	26
156	Electromagnetic field analyses of two-layer power transmission cables consisting of coated conductors with magnetic and non-magnetic substrates and AC losses in their superconductor layers. Superconductor Science and Technology, 2008, 21, 015007.	1.8	17
157	Total AC Loss in Twisted Multifilamentary Coated Conductors Carrying AC Transport Current in AC Transverse Magnetic Field. IEEE Transactions on Applied Superconductivity, 2007, 17, 3183-3186.	1.1	6
158	Numerical Analysis of AC Losses in Multifilamentary Coated Conductors With Non-Uniform Electric Properties. IEEE Transactions on Applied Superconductivity, 2007, 17, 2402-2405.	1.1	4
159	Total AC Loss Characteristics in a Stacked YBCO Conductor. IEEE Transactions on Applied Superconductivity, 2007, 17, 2442-2445.	1.1	19
160	AC Loss Reduction of Superconducting Power Transmission Cables Composed of Coated Conductors. IEEE Transactions on Applied Superconductivity, 2007, 17, 1712-1717.	1.1	60
161	Low ac Loss Multifilament Coated Conductors. IEEE Transactions on Applied Superconductivity, 2007, 17, 3148-3150.	1.1	13
162	Critical current density distribution and magnetization loss in YBCO coated conductors. Physica C: Superconductivity and Its Applications, 2007, 463-465, 790-794.	0.6	21

#	Article	IF	CITATIONS
163	Study of an YBCO HTS transmission cable system. Physica C: Superconductivity and Its Applications, 2007, 463-465, 1150-1153.	0.6	20
164	Recent development of an HTS power cable using YBCO tapes. Physica C: Superconductivity and Its Applications, 2007, 463-465, 1154-1158.	0.6	13
165	Numerical study on AC loss characteristics of superconducting power transmission cables comprising coated conductors with magnetic substrates. Physica C: Superconductivity and Its Applications, 2007, 463-465, 775-780.	0.6	26
166	Multifilament YBa2Cu3O6+x-coated conductors with minimized coupling losses. Applied Physics Letters, 2006, 89, 012506.	1.5	24
167	Reduction of Error in Magnetic Knife Method to Measure <tex>\$J_rm c\$</tex> Distribution of YBCO Coated Conductor. IEEE Transactions on Applied Superconductivity, 2006, 16, 1035-1038.	1.1	4
168	AC Loss Characteristics of YBCO Coated Conductors With Varying Magnitude of Critical Current. IEEE Transactions on Applied Superconductivity, 2006, 16, 85-88.	1.1	18
169	Comparison between measured and numerically calculated magnetization losses in multifilamentary YBCO coated conductors. Physica C: Superconductivity and Its Applications, 2006, 445-448, 707-711.	0.6	3
170	Lateral Jc distribution of YBCO coated conductors fabricated by IBAD/MOCVD process. Physica C: Superconductivity and Its Applications, 2006, 445-448, 712-716.	0.6	28
171	Comparison of the total AC loss characteristics in YBCO conductors and BSCCO multifilamentary tapes with identical engineering critical current densities. Superconductor Science and Technology, 2006, 19, 742-747.	1.8	10
172	Magnetic flux penetration into twisted multifilamentary coated superconductors subjected to ac transverse magnetic fields. Journal of Applied Physics, 2006, 100, 123907.	1.1	24
173	Electromagnetic Field Analysis of YBCO Coated Conductors in Multi-Layer HTS Cables. IEEE Transactions on Applied Superconductivity, 2006, 16, 127-130.	1.1	17
174	Perspective for Applications to AC Power Devices. Journal of the Institute of Electrical Engineers of Japan, 2006, 126, 283-285.	0.0	0
175	Electromagnetic field analysis of an YBCO coated conductor exposed to the non-uniform magnetic field in superconducting cables. Physica C: Superconductivity and Its Applications, 2005, 432, 215-222.	0.6	8
176	AC loss characteristics of coated conductor and the perspective for its AC loss reduction. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1267-1275.	0.6	7
177	AC loss measurements of twisted and untwisted BSCCO multifilamentary tapes. Cryogenics, 2005, 45, 29-34.	0.9	13
178	Magnetization losses in multifilament coated superconductors. Applied Physics Letters, 2005, 86, 072509.	1.5	34
179	Numerical Analysis of Magnetization Loss in Finite-Length Multifilamentary YBCO Coated Conductors. IEEE Transactions on Applied Superconductivity, 2005, 15, 2855-2858.	1.1	21
180	AC Loss of YBCO Coated Conductors Fabricated by IBAD/PLD Method. IEEE Transactions on Applied Superconductivity, 2005, 15, 2843-2846.	1.1	19

#	Article	IF	CITATIONS
181	Magnetization losses in multiply connected YBa2Cu3O6+x-coated conductors. Journal of Applied Physics, 2005, 98, 113909.	1.1	25
182	AC Loss Characteristics of Multifilamentary YBCO Coated Conductors. IEEE Transactions on Applied Superconductivity, 2005, 15, 1637-1642.	1.1	38
183	Electromagnetic Field Analysis of Rectangular Superconductor With Large Aspect Ratio in Arbitrary Orientated Magnetic Fields. IEEE Transactions on Applied Superconductivity, 2005, 15, 1574-1577.	1.1	29
184	Measurement of Lateral Current Redistribution of Fault Current Limiter Using YBCO Thin Film. IEEE Transactions on Applied Superconductivity, 2005, 15, 2023-2026.	1.1	9
185	Magnetization loss of YBCO coated conductors and BSCCO multifilamentary tapes. Superconductor Science and Technology, 2004, 17, 295-299.	1.8	20
186	An experimental method for total AC loss measurement of highTcsuperconductors. Superconductor Science and Technology, 2004, 17, 371-379.	1.8	78
187	Magnetization Property of Bi-2212 Round Wires. IEEE Transactions on Applied Superconductivity, 2004, 14, 1098-1101.	1.1	2
188	Application of Parallelized SOR Method to Electromagnetic Field Analysis of Superconductors. IEEE Transactions on Applied Superconductivity, 2004, 14, 1874-1877.	1.1	2
189	Influence of film width and magnetic field orientation on AC loss in YBCO thin film. Superconductor Science and Technology, 2004, 17, 485-492.	1.8	31
190	Total AC loss of YBCO coated conductor carrying AC transport current in AC transverse magnetic field with various orientations. Superconductor Science and Technology, 2004, 17, 983-988.	1.8	31
191	AC loss reduction of YBCO coated conductors by multifilamentary structure. Superconductor Science and Technology, 2004, 17, 1464-1471.	1.8	126
192	FEM Analysis of AC Loss in Twisted Bi-2223 Multifilamentary Tapes Carrying AC Transport Current in AC Transverse Magnetic Field with Arbitrary Orientation. IEEE Transactions on Applied Superconductivity, 2004, 14, 782-785.	1.1	7
193	Total AC loss characteristics of untwisted and twisted Bi-2223 multifilamentary tapes and interaction between self and external magnetic fields. Superconductor Science and Technology, 2004, 17, 1311-1318.	1.8	19
194	Electromagnetic field analysis of rectangular high Tc superconductor with large aspect ratio. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1050-1055.	0.6	24
195	Influence of silver layer thickness on magnetization loss of YBCO coated conductors in transverse magnetic field with various orientations. Physica C: Superconductivity and Its Applications, 2004, 412-414, 992-998.	0.6	12
196	Current redistribution and stability of superconducting triplex cable without electrical insulation carrying non-uniform current. Cryogenics, 2003, 43, 249-254.	0.9	2
197	Total AC loss characteristics of high Tc superconducting tapes. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1083-1090.	0.6	13
198	Total AC losses in twisted and untwisted multifilamentary Bi-2223 superconducting tapes carrying AC transport current in AC longitudinal magnetic field. Superconductor Science and Technology, 2003, 16, 314-321.	1.8	14

#	Article	IF	CITATIONS
199	AC loss measurements of twisted and non-twisted BSCCO tapes in transverse magnetic field with various directions. IEEE Transactions on Applied Superconductivity, 2003, 13, 3557-3560.	1.1	9
200	Magnetization loss measurements of Bi-2212 round wires fabricated by stranded-and-formed method. IEEE Transactions on Applied Superconductivity, 2002, 12, 1599-1602.	1.1	5
201	Quench propagation and stability of Nb/sub 3/Al superconductors made by rapid heating, quenching, and transformation process. IEEE Transactions on Applied Superconductivity, 2002, 12, 1001-1004.	1.1	5
202	Longitudinal magnetization loss in twisted multifilamentary Bi2223 tape. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1723-1726.	0.6	6
203	AC losses in superconducting Ag/Bi-2223 composite tapes with interfilamentary barrier. Physica C: Superconductivity and Its Applications, 2001, 357-360, 1226-1229.	0.6	1
204	Mode of magnetic flux penetration into high Tc superconductors with various cross-sectional shape and their AC loss characteristics. Physica C: Superconductivity and Its Applications, 2001, 357-360, 1134-1143.	0.6	42
205	Stabilization for thermomagnetic instability of CuNi/NbTi superconducting wire in spatially distributed magnetic field. Electrical Engineering in Japan (English Translation of Denki Gakkai) Tj ETQq1 1 0.7843	31 4. 2887	Oværlock 10
206	Influence of current redistribution on quench propagation velocity in Rutherford cable. Cryogenics, 2001, 41, 563-572.	0.9	1
207	Experimental determination of two-dimensional critical current density distribution in YBCO coated conductors. Superconductor Science and Technology, 2001, 14, 611-617.	1.8	31
208	Power dissipation in composite Ag/Bi-2223 tapes with twisted and untwisted filaments. IEEE Transactions on Applied Superconductivity, 2001, 11, 2753-2756.	1.1	2
209	The Influence of Current Redistribution on Quench Propagation Velocity in Rutherford Cable TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2001, 36, 51-59.	0.1	0
210	Magnetic instability of ac multifilamentary superconductors in spatially distributed magnetic field. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2000, 131, 45-55.	0.2	0
211	Influence of longitudinal magnetic field on current distribution and AC loss in twisted multifilamentary high Tc superconducting tapes. Cryogenics, 2000, 40, 303-311.	0.9	12
212	Normal zone propagation process accompanied by current redistribution in superconducting triplex cables. Cryogenics, 2000, 40, 655-662.	0.9	3
213	Filament decoupling and magnetization loss of multifilamentary Bi2223 superconducting tapes. IEEE Transactions on Applied Superconductivity, 2000, 10, 1204-1207.	1.1	14
214	Angular dependence of AC transport current losses in biaxially aligned Ag/YBCO-123/YSZ/Hastelloy coated conductor. IEEE Transactions on Applied Superconductivity, 2000, 10, 1138-1141.	1.1	12
215	Numerical analysis of AC loss in high T/sub c/ twisted tape carrying AC transport current in external AC magnetic field. Effect of twisting on loss reduction. IEEE Transactions on Applied Superconductivity, 1999, 9, 2561-2564.	1.1	8
216	Measurement and FEM analysis of magnetization loss in HTS tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 770-773.	1.1	14

#	Article	IF	CITATIONS
217	Angular dependence of AC transport losses in multifilamentary Bi-2223/Ag tape on external DC magnetic fields. IEEE Transactions on Applied Superconductivity, 1999, 9, 817-820.	1.1	13
218	Penetration loss in BSCCO tape without transport current. IEEE Transactions on Applied Superconductivity, 1999, 9, 2565-2568.	1.1	13
219	Dependence of AC transport current losses of HTS wires on their structures and synthesizing processes. IEEE Transactions on Applied Superconductivity, 1999, 9, 1181-1184.	1.1	9
220	Recent technical trends of superconducting magnets in Japan. I. Magnet data base and recent progress in magnet winding current density. IEEE Transactions on Applied Superconductivity, 1999, 9, 547-552.	1.1	1
221	Theoretical model of twisted high Tc superconducting tapes for numerical alternating-current loss calculations. Journal of Applied Physics, 1999, 85, 4243-4249.	1.1	11
222	Recent technical trends of superconducting magnets in Japan. II. Stability and quench characteristics. IEEE Transactions on Applied Superconductivity, 1999, 9, 600-603.	1.1	0
223	Non-uniform current distribution in superconducting cables exposed to external magnetic field and its influence on stability. IEEE Transactions on Applied Superconductivity, 1999, 9, 579-582.	1.1	4
224	Analytical formulae of coupling loss and hysteresis loss in HTS tape. Cryogenics, 1999, 39, 99-106.	0.9	26
225	Influence of interstrand current redistribution on acceleration of quench propagation in eight-strand Rutherford cables. IEEE Transactions on Applied Superconductivity, 1999, 9, 266-269.	1.1	5
226	Influence of current re-distribution on minimum quench energy of superconducting triplex cable against local disturbance. Cryogenics, 1998, 38, 559-568.	0.9	19
227	Overview of current distribution and re-distribution in superconducting cables and their influence on stability. Cryogenics, 1998, 38, 545-550.	0.9	25
228	Influence of DC external magnetic field on AC transport current loss of HTS tape. Physica C: Superconductivity and Its Applications, 1998, 310, 90-94.	0.6	18
229	Numerical modelings of superconducting wires for AC loss calculations. Physica C: Superconductivity and Its Applications, 1998, 310, 16-29.	0.6	206
230	Finite element analysis of AC loss in non-twisted Bi-2223 tape carrying AC transport current and/or exposed to DC or AC external magnetic field. Physica C: Superconductivity and Its Applications, 1998, 310, 30-35.	0.6	79
231	Ramp rate instability of multifilamentary superconductors due to longitudinal magnetic field. IEEE Transactions on Applied Superconductivity, 1997, 7, 235-238.	1.1	1
232	Magnetic instability of AC multifilamentary wire due to transport current and its dependence on phase of external AC magnetic field. IEEE Transactions on Applied Superconductivity, 1997, 7, 227-230.	1.1	0
233	Experimental study on current re-distribution and stability of multi-strand superconducting cables. IEEE Transactions on Applied Superconductivity, 1997, 7, 942-945.	1.1	7
234	Numerical analysis of AC losses in high T/sub c/ superconductors based on E-j characteristics represented with n-value. IEEE Transactions on Applied Superconductivity, 1997, 7, 2110-2113.	1.1	86

#	Article	IF	CITATIONS
235	AC losses of AC superconducting cable due to transport current in external AC magnetic field. IEEE Transactions on Applied Superconductivity, 1997, 7, 282-285.	1.1	7
236	AC loss and stability analysis in multifilamentary superconductors based on temporal evolution of current/temperature distribution. IEEE Transactions on Magnetics, 1996, 32, 2747-2750.	1.2	5
237	Dependence of magnetic instability of AC superconducting wire on phases of external AC magnetic field. IEEE Transactions on Magnetics, 1996, 32, 2850-2853.	1.2	Ο
238	Transient heat transfer characteristics of supercritical helium and stability analysis of CCICS. Cryogenics, 1996, 36, 183-188.	0.9	3
239	AC losses in multifilamentary superconductors carrying transport current and exposed to external magnetic field-analysis of temporal evolution of current distribution. IEEE Transactions on Applied Superconductivity, 1995, 5, 984-987.	1.1	13
240	Development of prototype superconducting linear induction motor for steel making processes. IEEE Transactions on Applied Superconductivity, 1995, 5, 976-979.	1.1	5
241	Dependence of self field AC losses in AC multifilamentary composites on phase of external AC magnetic field. IEEE Transactions on Applied Superconductivity, 1995, 5, 733-736.	1.1	8
242	Stability analysis of multi-strand superconducting cables. IEEE Transactions on Applied Superconductivity, 1995, 5, 218-221.	1.1	14
243	Electric field and losses at AC self field mode in MF composites. IEEE Transactions on Magnetics, 1994, 30, 2411-2414.	1.2	8
244	Stability of cable-in-conduit internally cooled superconductors subject to local disturbance. IEEE Transactions on Magnetics, 1994, 30, 2312-2315.	1.2	8
245	Current distribution in multifilamentary superconductors and their quench current degradation. IEEE Transactions on Magnetics, 1994, 30, 2277-2280.	1.2	1
246	Stability and AC loss of superconducting cables— Analysis of current imbalance and inter-strand coupling losses. Cryogenics, 1994, 34, 559-562.	0.9	1
247	Stability of cable-in-conduit internally-cooled superconductor subject to local disturbance-stabilityanalysis based on measured transient heat transfer of SHE in narrow channel. Cryogenics, 1994, 34, 603-606.	0.9	8
248	Development and electrical test of a 30 kVA class fully superconducting generator. IEEE Transactions on Magnetics, 1994, 30, 2308-2311.	1.2	9
249	Peculiarities in electromagnetic behavior of MF NbTi composites for AC use. IEEE Transactions on Magnetics, 1994, 30, 1681-1686.	1.2	5
250	Influence of current re-distribution and thermal diffusion among strands on stability of superconducting cables against local disturbances. IEEE Transactions on Magnetics, 1994, 30, 2281-2284.	1.2	36
251	Influence of longitudinal magnetic field on thermomagnetic instabilities in a.c. superconducting cables. Cryogenics, 1993, 33, 889-899.	0.9	60
252	Disturbance characteristics and stability of high current density superconducting wires. Fusion Engineering and Design, 1993, 20, 339-344.	1.0	16

#	Article	IF	CITATIONS
253	Instabilities in multi-strand AC superconducting cables caused by longitudinal magnetic field with transverse magnetic field. IEEE Transactions on Applied Superconductivity, 1993, 3, 160-163.	1.1	3
254	Analysis of degradation in AC superconducting cables. IEEE Transactions on Applied Superconductivity, 1993, 3, 126-129.	1.1	5
255	Quench characteristics and current distribution of multi-strand AC superconducting cables. IEEE Transactions on Applied Superconductivity, 1993, 3, 156-159.	1.1	4
256	Study on fluctuations in supporting force of conductors caused by fluctuations in conductor dimensions. IEEE Transactions on Applied Superconductivity, 1993, 3, 484-487.	1.1	5
257	Experiments of Axial Compression of Flux-Core Spheromak. Journal of the Physical Society of Japan, 1993, 62, 1552-1561.	0.7	7
258	Development of 30 kVA class fully superconducting generator. IEEE Transactions on Magnetics, 1992, 28, 283-286.	1.2	11
259	Influence of copper-to-superconductor ratio on stability. Cryogenics, 1992, 32, 494-497.	0.9	4
260	Formation of Free-Boundary Flux-Core Spheromaks. Journal of the Physical Society of Japan, 1991, 60, 2632-2644.	0.7	6
261	Statistical study on stability and quench protection of pool cooled superconducting magnets. Cryogenics, 1991, 31, 585-589.	0.9	2
262	Frequency dependence of quench current of a.c. superconducting winding for linear induction motor. Cryogenics, 1991, 31, 607-611.	0.9	3
263	Influence of copper to superconductor ratio on stability of superconductors. Cryogenics, 1991, 31, 528-532.	0.9	7
264	Equilibrium studies on the magnetic configuration of flux-core spheromaks in a finite-length cylindrical vessel KakuyūgŕKenkyū, 1990, 64, 362-375.	0.1	2
265	Magnetic Structure in the Entrance Region of Spheromaks Sustained by a Magnetized Coaxial Plasma Gun under Long Pulse Operation. Journal of the Physical Society of Japan, 1989, 58, 2049-2061.	0.7	1