Chang-Gu Hyun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3832555/publications.pdf

Version: 2024-02-01

63	705	15	23
papers	citations	h-index	g-index
63	63	63	818
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Chrysoeriol Enhances Melanogenesis in B16F10 Cells Through the Modulation of the MAPK, AKT, PKA, and Wnt/ \hat{l}^2 -Catenin Signaling Pathways. Natural Product Communications, 2022, 17, 1934578X2110692.	0.5	3
2	Mechanistic Insights into the Ameliorating Effect of Melanogenesis of Psoralen Derivatives in B16F10 Melanoma Cells. Molecules, 2022, 27, 2613.	3.8	9
3	Anti-Inflammatory Effects of Psoralen Derivatives on RAW264.7 Cells via Regulation of the NF-κB and MAPK Signaling Pathways. International Journal of Molecular Sciences, 2022, 23, 5813.	4.1	10
4	Anti-Inflammatory Effects of Spiramycin in LPS-Activated RAW 264.7 Macrophages. Molecules, 2022, 27, 3202.	3.8	9
5	Immunomodulatory effects of Abelmoschus esculentus water extract through MAPK and NF-κB signaling in RAW 264.7 cells. Biotechnology Notes, 2022, 3, 38-44.	1.2	4
6	Complete Genome Sequence and Cosmetic Potential of Viridibacillus sp. JNUCC6 Isolated from Baengnokdam, the Summit Crater of Mt. Halla. Cosmetics, 2022, 9, 73.	3.3	0
7	Anti-Melanogenic Effects of Paederia foetida L. Extract via MAPK Signaling-Mediated MITF Downregulation. Cosmetics, 2021, 8, 22.	3.3	6
8	Anti-Inflammatory Effects of 6,7-Dihydroxy-4-Methylcoumarin on LPS-Stimulated Macrophage Phosphorylation in MAPK Signaling Pathways. Natural Product Communications, 2021, 16, 1934578X2110209.	0.5	1
9	Genome Analysis of Streptomyces nojiriensis JCM 3382 and Distribution of Gene Clusters for Three Antibiotics and an Azasugar across the Genus Streptomyces. Microorganisms, 2021, 9, 1802.	3.6	5
10	The hyaluronan synthesis inhibitor 7-hydroxy-4-methylcoumarin inhibits LPS-induced inflammatory response in RAW 264.7 macrophage cells. Journal of Applied Biological Chemistry, 2021, 64, 263-268.	0.4	1
11	<i>Carica papaya</i> leaf water extract promotes innate immune response via MAPK signaling pathways. Journal of Applied Biological Chemistry, 2021, 64, 277-284.	0.4	4
12	Anti-Inflammatory Effects of 6-Methylcoumarin in LPS-Stimulated RAW 264.7 Macrophages via Regulation of MAPK and NF-ÎB Signaling Pathways. Molecules, 2021, 26, 5351.	3.8	22
13	Lincomycin induces melanogenesis through the activation of MITF via p38 MAPK, AKT, and PKA signaling pathways. Journal of Applied Biological Chemistry, 2021, 64, 323-331.	0.4	3
14	Linarin enhances melanogenesis in B16F10 cells via MAPK and PI3K/AKT signaling pathways. Journal of Applied Biological Chemistry, 2021, 64, 447-451.	0.4	1
15	Inhibitory Effects of Pinostilbene on Adipogenesis in 3T3-L1 Adipocytes: A Study of Possible Mechanisms. International Journal of Molecular Sciences, 2021, 22, 13446.	4.1	15
16	Anti-Inflammatory Effects and Their Correlation with Microbial Community of Shindari, a Traditional Jeju Beverage. Fermentation, 2020, 6, 87.	3.0	4
17	Anti-inflammatory Effect of d-(+)-Cycloserine Through Inhibition of NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages. Natural Product Communications, 2020, 15, 1934578X2092048.	0.5	7
18	Antioxidant Activities of Jeju Wax Apple (Syzygium samarangense) and Safety of Human Keratinocytes and Primary Skin Irritation Test. Cosmetics, 2020, 7, 39.	3.3	6

#	Article	IF	CITATIONS
19	Inhibitory Effects of Pinostilbene Hydrate on Melanogenesis in B16F10 Melanoma Cells via ERK and p38 Signaling Pathways. International Journal of Molecular Sciences, 2020, 21, 4732.	4.1	18
20	Whole-Genome Sequencing of Lentibacillus sp. Strain JNUCC-1, Isolated from Fermented Anchovy Sauce (Myeolchi Aekjeot). Microbiology Resource Announcements, 2020, 9, .	0.6	0
21	Induction of Melanogenesis by Fosfomycin in B16F10 Cells Through the Upregulation of P-JNK and P-p38 Signaling Pathways. Antibiotics, 2020, 9, 172.	3.7	15
22	Bacillus subtilis JNUCC Isolated from Galchisokjeot: Draft Genome Sequence and α-glucosidase and Tyrosinase Inhibitory Activities. Journal of Pure and Applied Microbiology, 2020, 14, 189-193.	0.9	1
23	4-Hydroxy-7-Methoxycoumarin Inhibits Inflammation in LPS-activated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation. Molecules, 2020, 25, 4424.	3.8	19
24	Anti-melanogenic effects of hot-water extracts from via MAPKs and cAMP signaling pathway on B16F10 cells. Die Pharmazie, 2020, 75, 565-570.	0.5	3
25	7,8-Dimethoxycoumarin stimulates melanogenesis via MAPKs mediated MITF upregulation. Die Pharmazie, 2020, 75, 107-111.	0.5	7
26	Anti-Melanogenic Effects of Hydroxyectoine via MITF Inhibition by JNK, p38, and AKT Pathways in B16F10 Melanoma Cells. Natural Product Communications, 2019, 14, 1934578X1985852.	0.5	10
27	7,8-dimethoxycoumarin Attenuates the Expression of IL-6, IL-8, and CCL2/MCP-1 in TNF-α-Treated HaCaT Cells by Potentially Targeting the NF-κB and MAPK Pathways. Cosmetics, 2019, 6, 41.	3.3	7
28	Anti-Melanogenic Effects of Bergamottin via Mitogen-Activated Protein Kinases and Protein Kinase B Signaling Pathways. Natural Product Communications, 2019, 14, 1934578X1986210.	0.5	2
29	Anti-Inflammatory Effects of Formononetin 7-O-phosphate, a Novel Biorenovation Product, on LPS-Stimulated RAW 264.7 Macrophage Cells. Molecules, 2019, 24, 3910.	3.8	17
30	Tobramycin Promotes Melanogenesis by Upregulating p38 MAPK Protein Phosphorylation in B16F10 Melanoma Cells. Antibiotics, 2019, 8, 140.	3.7	9
31	Biosynthesis of novel daidzein derivatives using Bacillus amyloliquefaciens whole cells. Biocatalysis and Biotransformation, 2018, 36, 469-475.	2.0	10
32	Anti-inflammatory Effect of Pratol in LPS-stimulated RAW 264.7 Cells via NF-κB Signaling Pathways. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	1
33	Antimelanogenic Effects of Polygonum tinctorium Flower Extract from Traditional Jeju Fermentation via Upregulation of Extracellular Signal-Regulated Kinase and Protein Kinase B Activation. International Journal of Molecular Sciences, 2018, 19, 2895.	4.1	11
34	Anti-inflammatory activities of Olea europaea extracts from Jeju Island on LPS-induced RAW 264.7 cells. Korean Journal of Food Preservation, 2018, 25, 557-563.	0.5	1
35	Anti-Inflammatory Activity of Sonchus oleraceus Extract in Lipopoly saccharide-Stimulated RAW264.7 Cells. Biomedical and Pharmacology Journal, 2018, 11, 1755-1761.	0.5	0
36	Pratol, an O-Methylated Flavone, Induces Melanogenesis in B16F10 Melanoma Cells via p-p38 and p-JNK Upregulation. Molecules, 2017, 22, 1704.	3.8	28

#	Article	IF	Citations
37	Anti-melanogenic Activity of Auraptene via ERK-mediated MITF Downregulation. Cosmetics, 2017, 4, 34.	3.3	3
38	Antimelanogenic of Artemisia fukudo Makino Extract in Melanoma Cells. KSBB Journal, 2017, 32, 233-237.	0.2	0
39	Whitening Activities of the Halophyte L. tetragonum (Thunberg) A. A. Bullock Extract in B16F10 Melanoma Cells. KSBB Journal, 2017, 32, 218-223.	0.2	0
40	Effects of Rumex axetosella, Sonchus oleraceus and Euphoibia jolkini Extracts on Melanin Synthesis in Melanoma Cells. KSBB Journal, 2017, 32, 187-192.	0.2	2
41	Anti-inflammatory Activity of Wax apple (Syzygium samarangense) Extract from Jeju Island. KSBB Journal, 2017, 32, 245-250.	0.2	2
42	Comparative Depigmentation Effects of Resveratrol and Its Two Methyl Analogues in $\hat{l}\pm$ -Melanocyte Stimulating Hormone-Triggered B16/F10 Murine Melanoma Cells. Preventive Nutrition and Food Science, 2016, 21, 155-159.	1.6	12
43	Tangeretin Triggers Melanogenesis through the Activation of Melanogenic Signaling Proteins and Sustained Extracellular Signal-Regulated Kinase in B16/F10 Murine Melanoma Cells. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	4
44	2,4,6-Trihydroxybenzaldehyde, a potential anti-obesity treatment, suppressed adipocyte differentiation in 3T3-L1 cells and fat accumulation induced by high-fat diet in C57BL/6 mice. Environmental Toxicology and Pharmacology, 2015, 39, 962-968.	4.0	13
45	Differential Effects of Methoxylated p-Coumaric Acids on Melanoma in B16/F10 Cells. Preventive Nutrition and Food Science, 2015, 20, 73-77.	1.6	16
46	Anti-inflammatory effects of isoketocharbroic acid from brown alga, Sargassum micracanthum. EXCLI Journal, 2015, 14, 1116-21.	0.7	9
47	Chemical Composition and Anti-inflammation Activity of Essential Oils from <i>Citrus unshiu</i> Flower. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	14
48	Jeju seaweeds suppress lipopolysaccharide-stimulated proinflammatory response in RAW 264.7 murine macrophages. Asian Pacific Journal of Tropical Biomedicine, 2014, 4, 529-537.	1.2	22
49	Melanogenesis inhibitory activity of Korean Undaria pinnatifida in mouse B16 melanoma cells. Interdisciplinary Toxicology, 2014, 7, 89-92.	1.0	8
50	Hypochoeris radicata attenuates LPS-induced inflammation by suppressing p38, ERK, and JNK phosphorylation in RAW 264.7 macrophages. EXCLI Journal, 2014, 13, 123-36.	0.7	12
51	Sargachromenol fromSargassum micracanthumInhibits the Lipopolysaccharide-Induced Production of Inflammatory Mediators in RAW 264.7 Macrophages. Scientific World Journal, The, 2013, 2013, 1-6.	2.1	18
52	Acanthoic Acid Inhibits Melanogenesis through Tyrosinase Down-regulation and Melanogenic Gene Expression in B16 Melanoma Cells. Natural Product Communications, 2013, 8, 1934578X1300801.	0.5	5
53	Chemical composition and anti-inflammatory effects of essential oil from Hallabong flower. EXCLI Journal, 2013, 12, 933-42.	0.7	11
54	Acanthoic acid inhibits melanogenesis through tyrosinase downregulation and melanogenic gene expression in B16 melanoma cells. Natural Product Communications, 2013, 8, 1359-62.	0.5	3

#	Article	IF	CITATION
55	Acanthoic acid induces cell apoptosis through activation of the p38 MAPK pathway in HL-60 human promyelocytic leukaemia. Food Chemistry, 2012, 135, 2112-2117.	8.2	34
56	Sasa quelpaertensis Phenylpropanoid Derivative Suppresses Lipopolysaccharide-induced Nitric Oxide Synthase and Cyclo-oxygenase-2 Expressions in RAW 264.7 Cells. Yakugaku Zasshi, 2011, 131, 961-967.	0.2	15
57	Inhibitory effect of Jeju endemic seaweeds on the production of pro-inflammatory mediators in mouse macrophage cell line RAW 264.7. Journal of Zhejiang University: Science B, 2010, 11, 315-322.	2.8	35
58	Acanthopanax koreanumFruit Waste Inhibits Lipopolysaccharide-Induced Production of Nitric Oxide and Prostaglandin E2in RAW 264.7 Macrophages. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	12
59	Chemical Constituents from Sargassum micracanthum and Antioxidant Activity. International Journal of Pharmacology, 2010, 6, 147-151.	0.3	26
60	Oenothera laciniata inhibits lipopolysaccharide induced production of nitric oxide, prostaglandin E2, and proinflammatory cytokines in RAW264.7 macrophages. Journal of Bioscience and Bioengineering, 2009, 107, 429-438.	2.2	52
61	<i>Abies koreana</i> Essential Oil Inhibits Drugâ€Resistant Skin Pathogen Growth and LPSâ€Induced Inflammatory Effects of Murine Macrophage. Lipids, 2009, 44, 471-476.	1.7	75
62	Cryptomeria japonica essential oil inhibits the growth of drug-resistant skin pathogens and LPS-induced nitric oxide and pro-inflammatory cytokine production. Polish Journal of Microbiology, 2009, 58, 61-8.	1.7	24
63	Citrus Peel Wastes as Functional Materials for Cosmeceuticals. Journal of Applied Biological Chemistry, 2008, 51, 7-12.	0.4	9