
Ivo Leito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3832407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 pKaUnits:Â Unification of Different Basicity Scales. Journal of Organic Chemistry, 2005, 70, 1019-1028.	3.2	853
2	A Comprehensive Self-Consistent Spectrophotometric Acidity Scale of Neutral BrÃ,nsted Acids in Acetonitrile. Journal of Organic Chemistry, 2006, 71, 2829-2838.	3.2	301
3	Matrix effects in pesticide multi-residue analysis by liquid chromatography–mass spectrometry. Journal of Chromatography A, 2008, 1187, 58-66.	3.7	275
4	On the Basicity of Organic Bases in Different Media. European Journal of Organic Chemistry, 2019, 2019, 6735-6748.	2.4	272
5	Gas-Phase Acidities of Some Neutral BrÃ,nsted Superacids:Â A DFT and ab Initio Study. Journal of the American Chemical Society, 2000, 122, 5114-5124.	13.7	240
6	Equilibrium Acidities of Superacids. Journal of Organic Chemistry, 2011, 76, 391-395.	3.2	237
7	Electrospray Ionization Efficiency Scale of Organic Compounds. Analytical Chemistry, 2010, 82, 2865-2872.	6.5	232
8	A review of analytical techniques for determination of Sudan I–IV dyes in food matrixes. Journal of Chromatography A, 2010, 1217, 2747-2757.	3.7	217
9	Tutorial review on validation of liquid chromatography–mass spectrometry methods: Part II. Analytica Chimica Acta, 2015, 870, 8-28.	5.4	217
10	Tutorial review on validation of liquid chromatography–mass spectrometry methods: Part I. Analytica Chimica Acta, 2015, 870, 29-44.	5.4	208
11	Acidities of strong neutral BrÃ,nsted acids in different media. Journal of Physical Organic Chemistry, 2013, 26, 162-170.	1.9	203
12	Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile Covering the Range between Pyridine and DBU. Journal of Organic Chemistry, 2000, 65, 6202-6208.	3.2	178
13	Acidâ^'Base Equilibria in Nonpolar Media. 2.1Self-Consistent Basicity Scale in THF Solution Ranging from 2-Methoxypyridine to EtP1(pyrr) Phosphazene. Journal of Organic Chemistry, 2002, 67, 1873-1881.	3.2	169
14	Prediction of acidity in acetonitrile solution with COSMOâ€RS. Journal of Computational Chemistry, 2009, 30, 799-810.	3.3	168
15	On the Acidity and Reactivity of Highly Effective Chiral BrÃnsted Acid Catalysts: Establishment of an Acidity Scale. Angewandte Chemie - International Edition, 2013, 52, 11569-11572.	13.8	159
16	ATR-FT-IR spectral collection of conservation materials in the extended region of 4000-80Âcm–1. Analytical and Bioanalytical Chemistry, 2016, 408, 3373-3379.	3.7	158
17	Acidity of Strong Acids in Water and Dimethyl Sulfoxide. Journal of Physical Chemistry A, 2016, 120, 3663-3669.	2.5	140
18	A Unified pH Scale for All Phases. Angewandte Chemie - International Edition, 2010, 49, 6885-6888.	13.8	138

#	Article	IF	CITATIONS
19	Pentakis(trifluoromethyl)phenyl, a Sterically Crowded and Electron-withdrawing Group:  Synthesis and Acidity of Pentakis(trifluoromethyl)benzene, -toluene, -phenol, and -aniline. Journal of Organic Chemistry, 2008, 73, 2607-2620.	3.2	123
20	On the Basicity of Conjugated Nitrogen Heterocycles in Different Media. European Journal of Organic Chemistry, 2017, 2017, 4475-4489.	2.4	121
21	pKa values in organic chemistry – Making maximum use of the available data. Tetrahedron Letters, 2018, 59, 3738-3748.	1.4	117
22	Guanidinophosphazenes:  Design, Synthesis, and Basicity in THF and in the Gas Phase. Journal of the American Chemical Society, 2005, 127, 17656-17666.	13.7	116
23	Critical test of performance of B3LYP functional for prediction of gas-phase acidities and basicities. Chemical Physics Letters, 2000, 323, 482-489.	2.6	112
24	Sodium adduct formation efficiency in ESI source. Journal of Mass Spectrometry, 2013, 48, 695-702.	1.6	102
25	Intrinsic Basicities of Phosphorus Imines and Ylides:Â A Theoretical Study. Journal of Physical Chemistry A, 2001, 105, 9575-9586.	2.5	101
26	Negative Electrospray Ionization via Deprotonation: Predicting the Ionization Efficiency. Analytical Chemistry, 2014, 86, 4822-4830.	6.5	99
27	Combating matrix effects in LC/ESI/MS: The extrapolative dilution approach. Analytica Chimica Acta, 2009, 651, 75-80.	5.4	96
28	ATR-FT-IR spectroscopy in the region of 550–230 cmâ^'1 for identification of inorganic pigments. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 1061-1072.	3.9	93
29	Electronic effects of triarylphosphines in metal-free hydrogen activation: a kinetic and computational study. Chemical Science, 2013, 4, 2788.	7.4	93
30	Basicities of Strong Bases in Water: A Computational Study. Croatica Chemica Acta, 2014, 87, 385-395.	0.4	92
31	Experimental Gas-Phase Basicity Scale of Superbasic Phosphazenes. Journal of Physical Chemistry A, 2007, 111, 1245-1250.	2.5	91
32	Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 175-181.	3.9	88
33	Solute-solvent and solvent-solvent interactions in binary solvent mixtures. 2. Effect of temperature on theET(30) polarity parameter of dipolar hydrogen bond acceptor-hydrogen bond donor mixtures. Journal of Physical Organic Chemistry, 1996, 9, 403-410.	1.9	85
34	Spectrophotometric Acidity Scale of Strong Neutral BrÃ,nsted Acids in Acetonitrile. Journal of Organic Chemistry, 1998, 63, 7868-7874.	3.2	85
35	Think Negative: Finding the Best Electrospray Ionization/MS Mode for Your Analyte. Analytical Chemistry, 2017, 89, 5665-5668.	6.5	84
36	Acidâ^'Base Equilibria in Nonpolar Media. 4. Extension of the Self-Consistent Basicity Scale in THF Medium. Gas-Phase Basicities of Phosphazenes. Journal of Organic Chemistry, 2003, 68, 9988-9993.	3.2	83

#	Article	IF	CITATIONS
37	Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 8. TheET(30) polarity of binary mixtures of formamides with hydroxylic solvents. Journal of Physical Organic Chemistry, 1999, 12, 109-115.	1.9	81
38	Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microbiology Ecology, 2005, 51, 363-373.	2.7	80
39	Strengths of Acids in Acetonitrile. European Journal of Organic Chemistry, 2021, 2021, 1407-1419.	2.4	80
40	BrÃ,nsted Basicities of Diamines in the Gas Phase, Acetonitrile, and Tetrahydrofuran. Chemistry - A European Journal, 2007, 13, 7631-7643.	3.3	79
41	Superbasicity of a Bis-guanidino Compound with a Flexible Linker: A Theoretical and Experimental Study. Journal of the American Chemical Society, 2009, 131, 16858-16868.	13.7	79
42	Approaching sub-ppm-level asymmetric organocatalysis of a highly challenging and scalable carbon–carbon bond forming reaction. Nature Chemistry, 2018, 10, 888-894.	13.6	79
43	Reflectance FT-IR spectroscopy as a viable option for textile fiber identification. Heritage Science, 2019, 7, .	2.3	79
44	Acidâ^'Base Equilibria in Nonpolar Media. Absolute pKa Scale of Bases in Tetrahydrofuran. Journal of Organic Chemistry, 2006, 71, 9062-9067.	3.2	76
45	Uncertainty sources in UV-Vis spectrophotometric measurement. Accreditation and Quality Assurance, 2006, 11, 246-255.	0.8	76
46	Performance of single-component CO2-binding organic liquids (CO2BOLs) for post combustion CO2 capture. Chemical Engineering Journal, 2011, 171, 794-800.	12.7	76
47	Towards the electrospray ionization mass spectrometry ionization efficiency scale of organic compounds. Rapid Communications in Mass Spectrometry, 2008, 22, 379-384.	1.5	74
48	Basicity Limits of Neutral Organic Superbases. Angewandte Chemie - International Edition, 2015, 54, 9262-9265.	13.8	72
49	Revision of the Gas-Phase Acidity Scale below 300 kcal mol ^{â^'1} . Journal of Physical Chemistry A, 2009, 113, 8421-8424.	2.5	69
50	Acidâ^'Base Equilibria in Nonpolar Media. 1. A Spectrophotometric Method for Acidity Measurements in Heptane. Journal of Organic Chemistry, 1997, 62, 8479-8483.	3.2	67
51	A New Class of Organosuperbases, <i>N</i> â€Alkyl―and <i>N</i> â€Arylâ€1,3â€dialkylâ€4,5â€dimethylimidaz Amines: Synthesis, Structure, p <i>K</i> _{BH+} Measurements, and Properties. Chemistry - A European Journal, 2012, 18, 3621-3630.	olâ€2â€yli 3.3	dene 66
52	Very Strong Organosuperbases Formed by Combining Imidazole and Guanidine Bases: Synthesis, Structure, and Basicity. Angewandte Chemie - International Edition, 2014, 53, 1435-1438.	13.8	66
53	Effect of Mobile Phase on Electrospray Ionization Efficiency. Journal of the American Society for Mass Spectrometry, 2014, 25, 1853-1861.	2.8	61
54	Conformational Switching of a Foldamer in a Multicomponent System by pH-Filtered Selection between Competing Noncovalent Interactions. Journal of the American Chemical Society, 2015, 137, 6680-6691.	13.7	60

#	Article	IF	CITATIONS
55	Basicity of Phosphanes and Diphosphanes in Acetonitrile. European Journal of Organic Chemistry, 2012, 2167-2172.	2.4	59
56	A unified view to BrÃ,nsted acidity scales: do we need solvated protons?. Chemical Science, 2017, 8, 6964-6973.	7.4	59
57	ATR-FT-IR spectroscopy in the region of 500–230 cmâ^'1 for identification of inorganic red pigments. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 764-771.	3.9	58
58	Bias in clinical chemistry. Bioanalysis, 2014, 6, 2855-2875.	1.5	57
59	Generalized Principle of Designing Neutral Superstrong BrÃ,nsted Acids. Journal of the American Chemical Society, 2002, 124, 5594-5600.	13.7	55
60	ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 133, 207-213.	3.9	55
61	Anchor Points for the Unified BrÃ,nsted Acidity Scale: The rCCC Model for the Calculation of Standard Gibbs Energies of Proton Solvation in Eleven Representative Liquid Media. Chemistry - A European Journal, 2011, 17, 5808-5826.	3.3	54
62	Gas-Phase BrÃ,nsted Superacidity of Some Derivatives of Monocarba- <i>closo</i> -Borates: a Computational Study. Journal of Physical Chemistry A, 2009, 113, 12972-12978.	2.5	52
63	Experimental Basicities of Superbasic Phosphonium Ylides and Phosphazenes. Journal of Organic Chemistry, 2016, 81, 7349-7361.	3.2	51
64	Experimental Basicities of Phosphazene, Guanidinophosphazene, and Proton Sponge Superbases in the Gas Phase and Solution. Journal of Physical Chemistry A, 2016, 120, 2591-2604.	2.5	51
65	Measurement Uncertainty Estimation in Amperometric Sensors: A Tutorial Review. Sensors, 2010, 10, 4430-4455.	3.8	50
66	Tutorial on estimating the limit of detection using LC-MS analysis, part I: Theoretical review. Analytica Chimica Acta, 2016, 942, 23-39.	5.4	50
67	Micro-Winkler titration method for dissolved oxygen concentration measurement. Analytica Chimica Acta, 2009, 648, 167-173.	5.4	47
68	Basicity of Acetamidine. Experimental and Theoretical Study. The Journal of Physical Chemistry, 1996, 100, 10490-10496.	2.9	46
69	Unified pH Values of Liquid Chromatography Mobile Phases. Analytical Chemistry, 2015, 87, 2623-2630.	6.5	46
70	Comparison of different methods aiming to account for/overcome matrix effects in LC/ESI/MS on the example of pesticide analyses. Analytical Methods, 2013, 5, 3035.	2.7	44
71	Paper spray ionization mass spectrometry: Study of a method for fast-screening analysis of pesticides in fruits and vegetables. Journal of Food Composition and Analysis, 2015, 41, 221-225.	3.9	43
72	The enormous acidifying effect of the supersubstituent NSO2CF3 on the acidity of derivatives of benzenesulfonamide and toluene-p-sulfonamide in the gas phase and in dimethyl sulfoxide. Perkin Transactions II RSC, 2001, , 229-232.	1.1	42

#	Article	IF	CITATIONS
73	Superacidity of closo-Dodecaborate-Based BrÃ,nsted Acids: a DFT Study. Journal of Physical Chemistry A, 2015, 119, 735-743.	2.5	39
74	The immense acidifying effect of the supersubstituent î€NSO2CF3on the acidity of amides and amidines of benzoic acids in acetonitrile. Perkin Transactions II RSC, 2002, , 1950-1955.	1.1	38
75	Estimation of uncertainty in routine pH measurement. Accreditation and Quality Assurance, 2002, 7, 242-249.	0.8	38
76	Substituent Effects on the Basicity of 3,7-Diazabicyclo[3.3.1]nonanes. Journal of Organic Chemistry, 2006, 71, 7155-7164.	3.2	38
77	Comparison of BrÃ,nsted acidities of neutral CH acids in gas phase and dimethyl sulfoxide. Perkin Transactions II RSC, 2000, , 1125-1133.	1.1	37
78	Influence of Water Content on the Acidities in Acetonitrile. Quantifying Charge Delocalization in Anions. Journal of Physical Chemistry A, 2010, 114, 11788-11793.	2.5	36
79	A highly accurate method for determination of dissolved oxygen: Gravimetric Winkler method. Analytica Chimica Acta, 2012, 741, 21-31.	5.4	35
80	NMR Method for Simultaneous Host–Guest Binding Constant Measurement. Journal of Organic Chemistry, 2014, 79, 2501-2513.	3.2	35
81	Uncertainty estimation in measurement of pKa values in nonaqueous media: A case study on basicity scale in acetonitrile medium. Analytica Chimica Acta, 2006, 566, 290-303.	5.4	34
82	Towards the Discrimination of Carboxylates by Hydrogenâ€Bond Donor Anion Receptors. Chemistry - A European Journal, 2015, 21, 5145-5160.	3.3	34
83	Highly Acidic Conjugateâ€Baseâ€Stabilized Carboxylic Acids Catalyze Enantioselective oxaâ€Pictet–Spengler Reactions with Ketals. Angewandte Chemie - International Edition, 2020, 59, 2028-2032.	13.8	34
84	Optimization of electrospray interface and quadrupole ion trap mass spectrometer parameters in pesticide liquid chromatography/electrospray ionization mass spectrometry analysis. Rapid Communications in Mass Spectrometry, 2010, 24, 919-926.	1.5	32
85	INVESTIGATION OF THE ADHESIVE RESIDUE ON THE FLINT INSERT AND THE ADHESIVE LUMP FOUND FROM THE PULLI EARLY MESOLITHIC SETTLEMENT SITE (ESTONIA) BY MICRO-ATR-FT-IR SPECTROSCOPY. Estonian Journal of Archaeology, 2011, 15, 3.	0.8	31
86	Unusual para-substituent effects on the intramolecular hydrogen-bond in hydrazone-based switches. Chemical Communications, 2012, 48, 10490.	4.1	31
87	Design of Novel Uncharged Organic Superbases: Merging Basicity and Functionality. Accounts of Chemical Research, 2021, 54, 3108-3123.	15.6	31
88	1,1,3,3â€ī etratriflylpropene (TTP): A Strong, Allylic C–H Acid for BrÃุnsted and Lewis Acid Catalysis. Angewandte Chemie - International Edition, 2017, 56, 1411-1415.	13.8	30
89	The basicity of substituted <i>N</i> , <i>N</i> â€dimethylanilines in solution and in the gas phase. Journal of Physical Organic Chemistry, 2013, 26, 171-181.	1.9	29
90	¹⁵ N NMR Spectroscopy, X-ray and Neutron Diffraction, Quantum-Chemical Calculations, and UV/vis-Spectrophotometric Titrations as Complementary Techniques for the Analysis of Pyridine-Supported Bicyclic Guanidine Superbases. Journal of Organic Chemistry, 2016, 81, 7612-7625.	3.2	29

#	Article	IF	CITATIONS
91	Evaluation of the residual liquid junction potential contribution to the uncertainty in pH measurement: A case study on low ionic strength natural waters. Analytica Chimica Acta, 2010, 664, 129-135.	5.4	28
92	Dissolved Oxygen Concentration Interlaboratory Comparison: What Can We Learn?. Water (Switzerland), 2013, 5, 420-442.	2.7	28
93	Synthesis and cathodic cleavage of a set of substituted benzenesulfonamides including the corresponding tert-butyl sulfonylcarbamates: pK a of sulfonamides. Journal of the Chemical Society Perkin Transactions 1, 1995, , 2025.	0.9	27
94	Accurate Method To Quantify Binding in Supramolecular Chemistry. Journal of Organic Chemistry, 2013, 78, 7796-7808.	3.2	27
95	Planar Chiral Phosphoric Acids with Biphenylene-Tethered Paracyclophane Scaffolds: Synthesis, Characterization, and Catalytic Screening. Journal of Organic Chemistry, 2014, 79, 9639-9646.	3.2	26
96	Using MOOCs for teaching analytical chemistry: experience at University of Tartu. Analytical and Bioanalytical Chemistry, 2015, 407, 1277-1281.	3.7	26
97	Acidity of benzoylcarbamates in dimethyl sulfoxide. Confirmation of mixed N/O alkylation in the Mitsunobu reaction. Journal of the Chemical Society Perkin Transactions II, 1993, , 655.	0.9	25
98	Uncertainty in liquid chromatographic analysis of pharmaceutical product: Influence of various uncertainty sources. Journal of Chromatography A, 2006, 1121, 55-63.	3.7	25
99	Transferability of the Electrospray Ionization Efficiency Scale between Different Instruments. Journal of the American Society for Mass Spectrometry, 2015, 26, 1923-1930.	2.8	25
100	Modular Design of Chiral Conjugate-Base-Stabilized Carboxylic Acids: Catalytic Enantioselective [4 + 2] Cycloadditions of Acetals. Journal of the American Chemical Society, 2020, 142, 15252-15258.	13.7	25
101	Synthesis and Physicochemical Properties of 2-SF ₅ -(Aza)Indoles, a New Family of SF ₅ Heterocycles. ACS Organic & Inorganic Au, 2021, 1, 43-50.	4.0	25
102	Tutorial on estimating the limit of detection using LC-MS analysis, part II: Practical aspects. Analytica Chimica Acta, 2016, 942, 40-49.	5.4	24
103	Basicity of some P1phosphazenes in water and in aqueous surfactant solution. Organic and Biomolecular Chemistry, 2006, 4, 2100-2105.	2.8	23
104	Influence of substituents on the infrared stretching frequencies of carbonyl group in esters of benzoic acid. Journal of Physical Organic Chemistry, 2006, 19, 654-663.	1.9	23
105	Fluoroalcohols as novel buffer components for basic buffer solutions for liquid chromatography electrospray ionization mass spectrometry: Retention mechanisms. Journal of Chromatography A, 2011, 1218, 8175-8180.	3.7	23
106	Study of liquid chromatography/electrospray ionization mass spectrometry matrix effect on the example of glyphosate analysis from cereals. Rapid Communications in Mass Spectrometry, 2011, 25, 3252-3258.	1.5	23
107	Analysis of dammar resin with MALDIâ€FTâ€ICRâ€MS and APCIâ€FTâ€ICRâ€MS. Journal of Mass Spectrometry, 20 392-409.	012, 47, 1.6	23
108	Absolute BrÃ,nsted Acidities and pH Scales in Ionic Liquids. ChemPhysChem, 2015, 16, 1428-1439.	2.1	23

#	Article	IF	CITATIONS
109	Establishing Atmospheric Pressure Chemical Ionization Efficiency Scale. Analytical Chemistry, 2016, 88, 3435-3439.	6.5	22
110	ISO 17025 quality system in a university environment. Accreditation and Quality Assurance, 2005, 10, 369-372.	0.8	21
111	"Fast peaks―in chromatograms of Sudan dyes. Journal of Chromatography A, 2007, 1160, 227-234.	3.7	21
112	Gasâ€phase acidity of bis[(perfluoroalkyl)sulfonyl]imides. Effects of the perfluoroalkyl group on the acidity. Journal of Physical Organic Chemistry, 2014, 27, 676-679.	1.9	20
113	Fluoro―and Perfluoralkylsulfonylpentafluoroanilides: Synthesis and Characterization of NH Acids for Weakly Coordinating Anions and Their Gasâ€Phase and Solution Acidities. Chemistry - A European Journal, 2015, 21, 5769-5782.	3.3	20
114	Sponge Spray—Reaching New Dimensions of Direct Sampling and Analysis by MS. Analytical Chemistry, 2017, 89, 11592-11597.	6.5	20
115	Gas-Phase Basicities Around and Below Water Revisited. Journal of Physical Chemistry A, 2010, 114, 10694-10699.	2.5	19
116	Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing. Analytica Chimica Acta, 2016, 932, 114-123.	5.4	19
117	Strategy of Pseudomonas pseudoalcaligenes C70 for effective degradation of phenol and salicylate. PLoS ONE, 2017, 12, e0173180.	2.5	19
118	Two fluoroalcohols as components of basic buffers for liquid chromatography electrospray ionization mass spectrometric determination of antibiotic residues. Analyst, The, 2011, 136, 4587.	3.5	18
119	Gas-Phase Lithium Cation Basicity: Revisiting the High Basicity Range by Experiment and Theory. Journal of the American Society for Mass Spectrometry, 2014, 25, 1962-1973.	2.8	18
120	Determination of neonicotinoids in Estonian honey by liquid chromatography–electrospray mass spectrometry. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 455-464.	1.5	18
121	The Ideal Ionic Liquid Salt Bridge for the Direct Determination of Gibbs Energies of Transfer of Single Ions, Part I: The Concept. Angewandte Chemie - International Edition, 2018, 57, 2344-2347.	13.8	18
122	Comparison of derivatization methods for the quantitative gas chromatographic analysis of oils. Analytical Methods, 2019, 11, 3514-3522.	2.7	18
123	Can coverage factor 2 be interpreted as an equivalent to 95% coverage level in uncertainty estimation? Two case studies. Measurement: Journal of the International Measurement Confederation, 2010, 43, 392-399.	5.0	17
124	Acidity of Anilines: Calculations vs Experiment. Journal of Physical Chemistry A, 2011, 115, 10335-10344.	2.5	17
125	Accounting for matrix effects of pesticide residue liquid chromatography/electrospray ionisation mass spectrometric determination by treatment of background mass spectra with chemometric tools. Rapid Communications in Mass Spectrometry, 2011, 25, 1159-1168.	1.5	17
126	Molecular structure and acid/base properties of 1,2-dihydro-1,3,5-triazine derivatives. New Journal of Chemistry, 2012, 36, 86-96.	2.8	17

#	Article	IF	CITATIONS
127	Synthesis of Electronâ€Rich Sterically Hindered P ₁ Phosphazene Bases by the Staudinger Reaction. European Journal of Organic Chemistry, 2013, 2013, 1811-1823.	2.4	17
128	The Ideal Ionic Liquid Salt Bridge for Direct Determination of Gibbs Energies of Transfer of Single Ions, Part II: Evaluation of the Role of Ion Solvation and Ion Mobilities. Angewandte Chemie - International Edition, 2018, 57, 2348-2352.	13.8	17
129	Utilization of data below the analytical limit of quantitation in pharmacokinetic analysis and modeling: promoting interdisciplinary debate. Bioanalysis, 2018, 10, 1229-1248.	1.5	17
130	Simple and scalable synthesis of the carborane anion CB ₁₁ H ₁₂ ^{â^'} . Dalton Transactions, 2019, 48, 7499-7502.	3.3	17
131	Acidâ^'Base Equilibria in Nonpolar Media. 3. Expanding the Spectrophotometric Acidity Scale in Heptane. Journal of Organic Chemistry, 2003, 68, 7795-7799.	3.2	16
132	Estimation of uncertainty in pK a values determined by potentiometric titration. Analytical and Bioanalytical Chemistry, 2004, 379, 720-9.	3.7	16
133	Bulk Gasâ€Phase Acidity. Chemistry - A European Journal, 2012, 18, 9333-9340.	3.3	16
134	2,5â€Dihydroxybenzoic acid solution in MALDIâ€MS: ageing and use for mass calibration. Journal of Mass Spectrometry, 2014, 49, 970-979.	1.6	16
135	Determination of glyphosate in surface water with high organic matter content. Environmental Science and Pollution Research, 2017, 24, 7880-7888.	5.3	16
136	Exploring Selectivity of 22 Acyclic Ureaâ€, Carbazole―and Indolocarbazoleâ€Based Receptors towards 11 Monocarboxylates. European Journal of Organic Chemistry, 2017, 2017, 5231-5237.	2.4	16
137	MALDIâ€FTâ€ICRâ€MS for archaeological lipid residue analysis. Journal of Mass Spectrometry, 2017, 52, 689-700.	1.6	16
138	Systematic Optimization of Liquid–Liquid Extraction for Isolation of Unidentified Components. ACS Omega, 2017, 2, 7772-7776.	3.5	16
139	Instrumental techniques in the analysis of natural red textile dyes. Journal of Cultural Heritage, 2020, 42, 19-27.	3.3	16
140	Sitting-atop complex formation of 2,3,7,8,12,13,17,18-octaethylporphyrin with copper(II) ion in acetonitrile. Inorganica Chimica Acta, 2002, 340, 87-96.	2.4	15
141	The Evolution of Electrospray Generated Droplets is Not Affected by Ionization Mode. Journal of the American Society for Mass Spectrometry, 2017, 28, 2124-2131.	2.8	15
142	lonization efficiency ladders as tools for choosing ionization mode and solvent in liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 1834-1843.	1.5	15
143	Determination of p <i>K</i> _a values of fluorocompounds in water using ¹⁹ F NMR. Journal of Physical Organic Chemistry, 2019, 32, e3940.	1.9	15
144	UV-Vis spectroscopic study of the hydrophilic and solvatochromic 4-[2,6-diphenyl-4-(pyridin-4-yl)pyridinium-1-yl]-2,6-bis(pyridin-3-yl)phenolate betaine dye in aqueous tetra-n-butylammonium bromide. Journal of Physical Organic Chemistry, 2005, 18, 1013-1017.	1.9	14

#	Article	IF	CITATIONS
145	Rapid Determination of Meropenem in Biological Fluids by LC: Comparison of Various Methods for Sample Preparation and Investigation of Meropenem Stability. Chromatographia, 2009, 70, 1423-1427.	1.3	14
146	Symmetric Potentiometric Cells for the Measurement of Unified pH Values. Symmetry, 2020, 12, 1150.	2.2	14
147	Electrospray Ionization Matrix Effect as an Uncertainty Source in HPLC/ESI-MS Pesticide Residue Analysis. Journal of AOAC INTERNATIONAL, 2010, 93, 306-314.	1.5	13
148	Quantitative non-destructive analysis of paper fillers using ATR-FT-IR spectroscopy with PLS method. Analytical and Bioanalytical Chemistry, 2019, 411, 5127-5138.	3.7	13
149	Retention of acidic and basic analytes in reversed phase column using fluorinated and novel eluent additives for liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2020, 1613, 460667.	3.7	13
150	A unified pH scale for all solvents: part I – intention and reasoning (IUPAC Technical Report). Pure and Applied Chemistry, 2021, 93, 1049-1060.	1.9	13
151	Uncertainty in photometric analysis: a case study. Accreditation and Quality Assurance, 2005, 10, 197-207.	0.8	12
152	1,1,3,3â€Tetratriflylpropen (TTP): eine starke, allylische Câ€Hâ€Säre für die BrÃ,nsted―und Lewisâ€Säreâ€Katalyse. Angewandte Chemie, 2017, 129, 1433-1437.	2.0	12
153	Social food here and hereafter: Multiproxy analysis of gender-specific food consumption in conversion period inhumation cemetery at Kukruse, NE-Estonia. Journal of Archaeological Science, 2018, 97, 90-101.	2.4	12
154	Synthesis and photophysics of a series of lipophilic phosphazeneâ€based fluorescent indicators. Journal of Physical Organic Chemistry, 2019, 32, e3950.	1.9	12
155	Design, synthesis and application of carbazole macrocycles in anion sensors. Beilstein Journal of Organic Chemistry, 2020, 16, 1901-1914.	2.2	12
156	Application of experimental (FT-ICR) and theoretical (AM1) methods to the study of proton-transfer reactions for tautomerizing amidines in the gas phase. Analytical and Bioanalytical Chemistry, 1996, 355, 412-414.	3.7	11
157	Model-based measurement uncertainty estimation in amperometric dissolved oxygen concentration measurement. Measurement Science and Technology, 2007, 18, 1877-1886.	2.6	11
158	Method development for the analysis of resinous materials with MALDIâ€FTâ€ICRâ€IMS: novel internal standards and a new matrix material for negative ion mode. Journal of Mass Spectrometry, 2017, 52, 603-617.	1.6	11
159	Hydrogen-Bond Donicity in DMSO and Gas Phase and Its Dependence on Brønsted Acidity. Journal of Physical Chemistry A, 2017, 121, 357-369.	2.5	11
160	Comparative validation of amperometric and optical analyzers of dissolved oxygen: a case study. Environmental Monitoring and Assessment, 2018, 190, 313.	2.7	11
161	Bis(benzoxazolâ€⊋â€yl)methanes Hounding NacNac: Varieties and Applications in Main Group Metal Coordination. European Journal of Inorganic Chemistry, 2019, 2019, 3258-3264.	2.0	11
162	Classification of archaeological adhesives from Eastern Europe and Urals by ATRâ€FTâ€IR spectroscopy and chemometric analysis. Archaeometry, 2022, 64, 227-244.	1.3	11

#	Article	IF	CITATIONS
163	Unified pH Measurements of Ethanol, Methanol, and Acetonitrile, and Their Mixtures with Water. Sensors, 2021, 21, 3935.	3.8	11
164	Semiempirical (AM1) calculations of the proton affinities for N1, N1-dimethylformamidines: success and failures in the description of substituent effects. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1995, 92, 22-36.	0.2	11
165	Basicity of 3-aminopropionamidine derivatives in water and dimethyl sulphoxide. Implication for a pivotal step in the synthesis of distamycin A analogues. Journal of Physical Organic Chemistry, 1996, 9, 265-268.	1.9	10
166	Thermodynamic Stability of Trichlorocyclopropenyl Cation. An Experimental (FTICR) and Computational [G2(MP2)] Studyâ€. Journal of Organic Chemistry, 1998, 63, 8995-8997.	3.2	10
167	Boratabenzene Anions C ₅ B(CN) ₆ ^{â^²} and C ₅ B(CF ₃) ₆ ^{â^²} and the Superacidic Properties of their Conjugate Acids. ChemPhysChem, 2009, 10, 499-502.	2.1	10
168	Enhanced Nebulization Efficiency of Electrospray Mass Spectrometry: Improved Sensitivity and Detection Limit. Journal of the American Society for Mass Spectrometry, 2012, 23, 2051-2054.	2.8	10
169	Evaluating the COSMOâ€RS Method for Modeling Hydrogen Bonding in Solution. ChemPhysChem, 2013, 14, 1909-1919.	2.1	10
170	Alternative Eluent Composition for LC-MS Analysis of Perfluoroalkyl Acids in Raw Fish Samples. Journal of Agricultural and Food Chemistry, 2014, 62, 5259-5268.	5.2	10
171	Basicity of Very Weak Bases in 1,2â€Dichloroethane. Chemistry - A European Journal, 2016, 22, 17445-17449.	3.3	10
172	Predicting Relative Stability of Conformers in Solution with COSMO-RS. Journal of Physical Chemistry A, 2017, 121, 6823-6829.	2.5	10
173	Prediction of partition and distribution coefficients in various solvent pairs with COSMO-RS. Journal of Computer-Aided Molecular Design, 2018, 32, 711-722.	2.9	10
174	ESI outcompetes other ion sources in LC/MS trace analysis. Analytical and Bioanalytical Chemistry, 2019, 411, 3533-3542.	3.7	10
175	Solidâ€contact Acetateâ€selective Electrode Based on a 1,3â€bis(carbazolyl)ureaâ€ionophore. Electroanalysis, 2019, 31, 1061-1066.	2.9	10
176	Enantioselective N-Alkylation of Nitroindoles under Phase-Transfer Catalysis. Synthesis, 2020, 52, 1047-1059.	2.3	10
177	Software support for the Nordtest method of measurement uncertainty evaluation. Accreditation and Quality Assurance, 2012, 17, 603-612.	0.8	9
178	Validation of a new measuring system for water turbidity field measurements. Accreditation and Quality Assurance, 2014, 19, 175-183.	0.8	9
179	Synthesis and properties of highly lipophilic phosphazene bases. Tetrahedron Letters, 2017, 58, 2098-2102.	1.4	9
180	Gas phase basicity of biguanides – Comparison of the equilibrium and the kinetic methods. International Journal of Mass Spectrometry, 2019, 435, 61-68.	1.5	9

#	Article	IF	CITATIONS
181	Electrochemistry and Reactivity of Chelationâ€stabilized Hypervalent Bromine(III) Compounds. Chemistry - A European Journal, 2022, 28, .	3.3	9
182	Estimation of uncertainty in electrochemical amperometric measurement of dissolved oxygen concentration. Accreditation and Quality Assurance, 2004, 9, 340-348.	0.8	8
183	Anions and and the superacidic properties of their conjugate acids. Computational and Theoretical Chemistry, 2007, 815, 41-43.	1.5	8
184	On the accuracy of micro Winkler titration procedures: a case study. Accreditation and Quality Assurance, 2008, 13, 575-579.	0.8	8
185	Cooperative Organocatalysis: A Systematic Investigation of Covalently Linked Organophosphoric Acids for the Stereoselective Transfer Hydrogenation of Quinolines. European Journal of Organic Chemistry, 2019, 2019, 5190-5195.	2.4	8
186	Highly Acidic Conjugateâ€Baseâ€5tabilized Carboxylic Acids Catalyze Enantioselective oxaâ€Pictet–Spengler Reactions with Ketals. Angewandte Chemie, 2020, 132, 2044-2048.	2.0	8
187	LogP determination for highly lipophilic hydrogen-bonding anion receptor molecules. Analytica Chimica Acta, 2020, 1132, 123-133.	5.4	8
188	Bis(4â€benzhydrylâ€benzoxazolâ€⊋â€yl)methane – from a Bulky NacNac Alternative to a Trianion in Alkali Met Complexes. Chemistry - A European Journal, 2021, 27, 9858-9865.	al _{3.3}	8
189	in situ interlaboratory comparisons for dissolved oxygen concentration and pH. Accreditation and Quality Assurance, 2006, 10, 562-564.	0.8	7
190	Analysis of selenomethylselenocysteine and selenomethionine by LC-ESI-MS/MS with diethyl ethoxymethylenemalonate derivatization. Analyst, The, 2011, 136, 5241.	3.5	7
191	Influence of Water Content on Basicities in Acetonitrile. Journal of Solution Chemistry, 2014, 43, 1270-1281.	1.2	7
192	Multidentate Anion Receptors for Binding Glyphosate Dianion: Structure and Affinity. European Journal of Organic Chemistry, 2017, 2017, 1396-1406.	2.4	7
193	Enhancement of Push–Pull Properties of Pentafulvene and Pentafulvalene Derivatives by Protonation at Carbon. European Journal of Organic Chemistry, 2018, 2018, 739-749.	2.4	7
194	Synthesis and Basicity Studies of Quinolino[7,8- <i>h</i>]quinoline Derivatives. Journal of Organic Chemistry, 2020, 85, 11297-11308.	3.2	7
195	Quantitative GC–MS Analysis of Artificially Aged Paints with Variable Pigment and Linseed Oil Ratios. Molecules, 2021, 26, 2218.	3.8	7
196	Potentiometric Carboxylate Sensors Based on Carbazole-Derived Acyclic and Macrocyclic Ionophores. Chemosensors, 2021, 9, 4.	3.6	7
197	The uncertainty of UV–Vis spectrophotometric and FAAS analysis for the determination of iron in pharmaceutical products. Accreditation and Quality Assurance, 2007, 12, 593-601.	0.8	6
198	Polytrifluoromethylation versus Polyfluorination of the Isomers of Kekulé Benzene and Phenol: A Theoretical Study. Journal of Organic Chemistry, 2010, 75, 6436-6444.	3.2	6

#	Article	IF	CITATIONS
199	Application of enriched stable ¹⁹⁶ Hg isotope for monitoring the stability of total mercury in water samples. International Journal of Environmental Analytical Chemistry, 2015, 95, 1-15.	3.3	6
200	Differences in extracellular glutamate levels in striatum of rats with high and low exploratory activity. Pharmacological Reports, 2015, 67, 858-865.	3.3	6
201	[4-(Ph3 B)-2,6-Mes2 Py]â^' : A Sterically Demanding Anionic Pyridine. Chemistry - A European Journal, 2018, 24, 16851-16856.	3.3	6
202	Generalization of Acidâ€Base Diagrams Based on the Unified pHâ€Scale. ChemPhysChem, 2019, 20, 1779-1785.	2.1	6
203	Estimating Uncertainties in Oceanographic Trace Element Measurements. Frontiers in Marine Science, 2019, 5, .	2.5	6
204	Rifampicin as an example of beyond-rule-of-5 compound: Ionization beyond water and lipophilicity beyond octanol/water. European Journal of Pharmaceutical Sciences, 2021, 161, 105802.	4.0	6
205	Report of the 1st AcadeMiC Summer School for â€~Metrology in Chemistry', held in RogaÅįka Slatina, Slovenia (6–9 July 2005). Analytical and Bioanalytical Chemistry, 2006, 385, 1031-1032.	3.7	5
206	Estimation of uncertainty in electron probe microanalysis: iron determination in manuscripts, a case study. Mikrochimica Acta, 2008, 162, 313-323.	5.0	5
207	Application of the Nordtest method for "real-time―uncertainty estimation of on-line field measurement. Environmental Monitoring and Assessment, 2015, 187, 630.	2.7	5
208	Uncertainty contribution of derivatization in gas chromatography/mass spectrometric analysis. Rapid Communications in Mass Spectrometry, 2020, 34, e8704.	1.5	5
209	Contemporary trends in hydrophysical and hydrochemical parameters in the NE Baltic Sea. Estonian Journal of Earth Sciences, 2020, 69, 91.	1.1	5
210	Moisture in Solids: Comparison Between Evolved Water Vapor and Vaporization Coulometric Karl Fischer Methods. International Journal of Thermophysics, 2020, 41, 1.	2.1	5
211	Derivatization-targeted analysis of amino compounds in plant extracts in neutral loss acquisition mode by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2021, 1656, 462555.	3.7	5
212	Acidity constants in different media (I=0 and I=0.1ÂM KCl) from the uncertainty perspective. Analytical and Bioanalytical Chemistry, 2006, 385, 1124-1139.	3.7	4
213	Ensuring repeatability and robustness of poly(glycidyl methacrylateâ€coâ€ethylene dimethacrylate) <scp>HPLC</scp> monolithic columns of 3 mm id through covalent bonding to the column wall. Journal of Separation Science, 2013, 36, 2458-2463.	2.5	4
214	A summer school where master students learn the skills needed to work in an accredited analytical laboratory. Analytical and Bioanalytical Chemistry, 2015, 407, 6899-6907.	3.7	4
215	Three Fluorinated Trityl Alcohols and their Lithium Salts – Synthesis, Molecular Structures, and Acidity. European Journal of Inorganic Chemistry, 2019, 2019, 3612-3618.	2.0	4
216	Calibration and Uncertainty Estimation for Water Content Measurement in Solids. International Journal of Thermophysics, 2021, 42, 1.	2.1	4

#	Article	IF	CITATIONS
217	Experimental and Computational Study of Aminoacridines as MALDI(â^')-MS Matrix Materials for the Analysis of Complex Samples. Journal of the American Society for Mass Spectrometry, 2021, 32, 1080-1095.	2.8	4
218	Aiding a Better Understanding of Molybdopterin: Syntheses, Structures, and pKa Value Determinations of Varied Pterin-Derived Organic Scaffolds Including Oxygen, Sulfur and Phosphorus Bearing Substituents. Journal of Molecular Structure, 2021, 1230, 129867.	3.6	4
219	A New Direction in Microfluidics: Printed Porous Materials. Micromachines, 2021, 12, 671.	2.9	4
220	Quantitative electrospray ionization efficiency scale: 10Âyears after. Rapid Communications in Mass Spectrometry, 2021, 35, e9178.	1.5	4
221	Evaluation and validation of detailed and simplified models of the uncertainty of unified <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:mtext>p</mml:mtext><mml:msubsup><mml:mtext>H</mml:mtext><mml: measurements in aqueous solutions. Analytica Chimica Acta. 2021. 1182. 338923.</mml: </mml:msubsup></mml:mrow></mml:math 	mrow>≺n	ıml [‡] mtext>a<
222	MiC in Chemistry Curriculum at the University of Tartu: the current status. Accreditation and Quality Assurance, 2002, 7, 159-162.	0.8	3
223	GUM Workbench as measurement modelling and uncertainty estimation software: experience at University of Tartu. Accreditation and Quality Assurance, 2003, 8, 520-522.	0.8	3
224	Quantifying uncertainty in measurement of mercury in suspended particulate matter by cold vapor technique using atomic absorption spectrometry with hydride generator. SpringerPlus, 2013, 2, 453.	1.2	3
225	The Ideal Ionic Liquid Salt Bridge for the Direct Determination of Gibbs Energies of Transfer of Single Ions, Part I: The Concept. Angewandte Chemie, 2018, 130, 2368-2371.	2.0	3
226	Quantitative analysis of the relationship of derivatization reagents and detection sensitivity of electrospray ionization-triple quadrupole tandem mass spectrometry: Hydrazines as prototypes. Analytica Chimica Acta, 2021, 1158, 338402.	5.4	3
227	Acidâ€Base and Anion Binding Properties of Tetrafluorinated 1,3â€Benzodiazole, 1,2,3â€Benzotriazole and 2,1,3â€Benzoselenadiazole. ChemPhysChem, 2021, 22, 2329-2335.	2.1	3
228	Quantitative mineralogical analysis of clay-containing materials using ATR-FT-IR spectroscopy with PLS method. Analytical and Bioanalytical Chemistry, 2021, 413, 6535-6550.	3.7	3
229	Toward Unified pH of Saline Solutions. Water (Switzerland), 2021, 13, 2522.	2.7	3
230	Biphasic pKa Values. Croatica Chemica Acta, 2018, 91, .	0.4	3
231	Retention mechanisms of acidic and basic analytes on the Pentafluorophenyl stationary phase using fluorinated eluent additives. Journal of Chromatography A, 2022, 1666, 462850.	3.7	3
232	Inducing a pH-dependent conformational response by competitive binding to Zn ²⁺ of a series of chiral ligands of disparate basicity. Chemical Science, 2022, 13, 2258-2269.	7.4	3
233	Electrospray ionization matrix effect as an uncertainty source in HPLC/ESI-MS pesticide residue analysis. Journal of AOAC INTERNATIONAL, 2010, 93, 306-14.	1.5	3
234	Macrocyclic <i>versus</i> open-chain carbazole receptors for carboxylate binding. Organic and Biomolecular Chemistry, 2022, 20, 2121-2130.	2.8	3

#	Article	IF	CITATIONS
235	Measurements and Utilization of Consistent Gibbs Energies of Transfer of Single Ions: Towards a Unified Redox Potential Scale for All Solvents. Chemistry - A European Journal, 2022, 28, .	3.3	3
236	Long-Time Evaluation of Solid-State Composite Reference Electrodes. Membranes, 2022, 12, 569.	3.0	3
237	Introduction of measurement uncertainty estimation into analytical instrument software: mission impossible?. Accreditation and Quality Assurance, 2004, 9, 666-670.	0.8	2
238	The effect of water contamination on the dew-point temperature scale realization with humidity generators. Metrologia, 2013, 50, 329-336.	1.2	2
239	Pentakis(trifluoromethyl)benzenediazonium Cation: A Useful Building Block for the Syntheis of Trifluoromethyl‣ubstituted Derivatives. ChemPlusChem, 2013, 78, 932-936.	2.8	2
240	Proficiency test of pH, conductivity and dissolved oxygen concentration field measurements in river water. Accreditation and Quality Assurance, 2014, 19, 259-268.	0.8	2
241	Solution and Gasâ€Phase Acidities of <i>allâ€trans</i> (<i>allâ€E</i>) Retinoic Acid: An Experimental and Computational Study. Chemistry - A European Journal, 2015, 21, 11238-11243.	3.3	2
242	Synthesis of Chiral Phosphazene Bases. Chemistry of Heterocyclic Compounds, 2016, 52, 541-545.	1.2	2
243	The Ideal Ionic Liquid Salt Bridge for Direct Determination of Gibbs Energies of Transfer of Single Ions, Part II: Evaluation of the Role of Ion Solvation and Ion Mobilities. Angewandte Chemie, 2018, 130, 2372-2376.	2.0	2
244	Alkali Metal Cations Bonding to Carboxylate Anions: Studies using Mass Spectrometry and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2020, 124, 4390-4399.	2.5	2
245	METefnet: developments in metrology for moisture in materials. , 2015, , .		2
246	A participatory improvement activity of the EC-JRC to improve metrology in chemistry in EU candidate countries. Accreditation and Quality Assurance, 2002, 7, 419-422.	0.8	1
247	"Measurement Science in Chemistry―consortium – a new force in analytical chemistry higher education in Europe. Analytical and Bioanalytical Chemistry, 2010, 397, 1635-1637.	3.7	1
248	A personal view on metrology in chemical analysis. Accreditation and Quality Assurance, 2015, 20, 229-231.	0.8	1
249	Effects of neutral and charged substituents on the infrared carbonyl stretching frequencies in phenyl and alkyl benzoates in DMSO. Journal of Physical Organic Chemistry, 2017, 30, e3608.	1.9	1
250	Comment on "Zemplén transesterification: a name reaction that has misled us for 90 years―by B. Ren, M. Wang, J. Liu, J. Ge, X. Zhang and H. Dong, Green Chemistry, 2015, 17, 1390–1394. Green Chemistry, 2018, 20, 2392-2394.	9.0	1
251	Effect of charged and <i>ortho</i> substituents on ¹⁷ O NMR chemical shifts of substituted phenyl tosylates in DMSO. Journal of Physical Organic Chemistry, 2018, 31, e3870.	1.9	1
252	EACH (Excellence in Analytical Chemistry), an Erasmus Mundus Joint Programme: progress and success. Analytical and Bioanalytical Chemistry, 2019, 411, 5913-5921.	3.7	1

#	Article	IF	CITATIONS
253	Dependence of the potentiometric response of PEDOT(PSS) on the solubility product of silver salts. Electrochimica Acta, 2021, 390, 138854.	5.2	1
254	Soluteâ€solvent and solventâ€solvent interactions in binary solvent mixtures. 2. Effect of temperature on the ET(30) polarity parameter of dipolar hydrogen bond acceptorâ€hydrogen bond donor mixtures. Journal of Physical Organic Chemistry, 1996, 9, 403-410.	1.9	1
255	Self-consistent acidity and basicity scales in nonaqueous solvents. Proceedings of the Estonian Academy of Sciences: Chemistry, 2005, 54, 94.	0.3	1
256	Electronic Modification of a Sterically Demanding Anionic Pyridine Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	1
257	Comparison of the ionisation mode in the determination of free amino acids in beers by Liquid Chromatography tandem mass spectrometry. Journal of Chromatography A, 2022, 1677, 463320.	3.7	1
258	A strategy for a national metrology institute to create a cost effective distributed metrology infrastructure for chemical measurements. Accreditation and Quality Assurance, 2004, 9, 478.	0.8	0
259	Quantum chemical calculations on a unified pH scale for all phases. Journal of Cheminformatics, 2011, 3, .	6.1	0
260	Applying the unified pH scale: absolute acidities in the gas phase and anchor points for eleven representative liquid media. Journal of Cheminformatics, 2012, 4, .	6.1	0
261	European analytical column. TrAC - Trends in Analytical Chemistry, 2015, 67, 217-219.	11.4	0
262	European Analytical Column No. 43. Analytical and Bioanalytical Chemistry, 2015, 407, 2653-2656.	3.7	0
263	MALDIâ€FTâ€ŀCRâ€MS for archaeological lipid residue analysis. Journal of Mass Spectrometry, 2017, 52, ii.	1.6	0
264	European Metrology Network on Climate and Ocean Observation: building a â€~one-stop shop' for reliable measurements of ECVs. , 2018, , .		0
265	Validation and extension of the gasâ€phase superacidity scale. Rapid Communications in Mass Spectrometry, 2019, , e8598.	1.5	0
266	A Chiral Sulfoxide-Based C–H Acid. Synlett, 0, 33, .	1.8	0
267	Novel Lipophilic Fluorophores with Highly Acidityâ€Dependent Twoâ€Photon Response. Chemistry - A European Journal, 2022, 28, .	3.3	0
268	Quantifying Acidity in Heterogeneous Systems: Biphasic p <i>K</i> _a Values. Analytical Chemistry, 2022, 94, 4059-4064.	6.5	0