Thomas Yong-Jin Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3832318/publications.pdf

Version: 2024-02-01

40 papers

2,952 citations

279798 23 h-index 315739 38 g-index

41 all docs

41 docs citations

times ranked

41

5170 citing authors

#	Article	IF	CITATIONS
1	Highly compressible 3D periodic graphene aerogel microlattices. Nature Communications, 2015, 6, 6962.	12.8	928
2	Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores. Nano Letters, 2016, 16, 3448-3456.	9.1	608
3	Ultralight Conductive Silver Nanowire Aerogels. Nano Letters, 2017, 17, 7171-7176.	9.1	163
4	High surface area carbon aerogel monoliths with hierarchical porosity. Journal of Non-Crystalline Solids, 2008, 354, 3513-3515.	3.1	145
5	Data-driven materials research enabled by natural language processing and information extraction. Applied Physics Reviews, 2020, 7, .	11.3	117
6	Reliable and explainable machine-learning methods for accelerated material discovery. Npj Computational Materials, $2019, 5, \ldots$	8.7	111
7	Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM. Microscopy and Microanalysis, 2014, 20, 425-436.	0.4	94
8	Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization. Chemistry of Materials, 2008, 20, 1064-1068.	6.7	91
9	Structural Development of Mercaptophenol Self-Assembled Monolayers and the Overlying Mineral Phase during Templated CaCO ₃ Crystallization from a Transient Amorphous Film. Journal of the American Chemical Society, 2007, 129, 10370-10381.	13.7	89
10	Machine vision-driven automatic recognition of particle size and morphology in SEM images. Nanoscale, 2020, 12, 19461-19469.	5 . 6	48
11	Structural evolution, formation pathways and energetic controls during template-directed nucleation of CaCO3. Faraday Discussions, 2012, 159, 105.	3 . 2	45
12	Carbon Scaffolds for Stiff and Highly Conductive Monolithic Oxide–Carbon Nanotube Composites. Chemistry of Materials, 2011, 23, 3054-3061.	6.7	44
13	Multiphase separation of copper nanowires. Chemical Communications, 2016, 52, 11627-11630.	4.1	38
14	Synthesis of ZnO coated activated carbon aerogel by simple sol–gel route. Journal of Materials Chemistry, 2011, 21, 330-333.	6.7	37
15	The solubility and recrystallization of 1,3,5-triamino-2,4,6-trinitrobenzene in a 3-ethyl-1-methylimidazolium acetate–DMSO co-solvent system. New Journal of Chemistry, 2009, 33, 50-56.	2.8	36
16	Nanomaterial Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge. Journal of Chemical Information and Modeling, 2020, 60, 2876-2887.	5.4	35
17	Ignition and Combustion Characteristics of Nanoaluminum with Copper Oxide Nanoparticles of Differing Oxidation State. Journal of Physical Chemistry C, 2016, 120, 29023-29029.	3.1	29
18	Gold Aerogel Monoliths with Tunable Ultralow Densities. Nano Letters, 2020, 20, 131-135.	9.1	28

#	Article	IF	CITATIONS
19	Predicting compressive strength of consolidated molecular solids using computer vision and deep learning. Materials and Design, 2020, 190, 108541.	7.0	28
20	Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning. Journal of Chemical Information and Modeling, 2021, 61, 2147-2158.	5.4	28
21	On-Demand and Location Selective Particle Assembly via Electrophoretic Deposition for Fabricating Structures with Particle-to-Particle Precision. Langmuir, 2015, 31, 3563-3568.	3.5	27
22	Hierarchical ZnO structures templated with amino acid based surfactants. Microporous and Mesoporous Materials, 2012, 151, 64-69.	4.4	24
23	Electro-Optical Device with Tunable Transparency Using Colloidal Core/Shell Nanoparticles. ACS Photonics, 2018, 5, 1343-1350.	6.6	24
24	Experimental Validation of the Geometrical Selection Model for Hydrothermally Grown Zinc Oxide Nanowire Arrays. Chemistry of Materials, 2013, 25, 1363-1371.	6.7	23
25	Tunable Amorphous Photonic Materials with Pigmentary Colloidal Nanostructures. Advanced Optical Materials, 2017, 5, 1600838.	7.3	21
26	Cooperative Reorganization of Mineral and Template during Directed Nucleation of Calcium Carbonate. Journal of Physical Chemistry C, 2013, 117, 11076-11085.	3.1	15
27	Crystal structure prediction of energetic materials and a twisted arene with Genarris and GAtor. CrystEngComm, 2021, 23, 6023-6038.	2.6	15
28	Shape control synthesis of fluorapatite structures based on supersaturation: prismatic nanowires, ellipsoids, star, and aggregate formation. CrystEngComm, 2012, 14, 6384.	2.6	14
29	Route to high surface area TiO2/C and TiCN/C composites. Journal of Materials Chemistry, 2009, 19, 7146.	6.7	13
30	A study of real-world micrograph data quality and machine learning model robustness. Npj Computational Materials, 2021, 7, .	8.7	9
31	Correlating dynamic microstructure to observed color in electrophoretic displays via <i>in situ</i> small-angle x-ray scattering. Physical Review Materials, 2020, 4, .	2.4	6
32	Automated Identification of Molecular Crystals' Packing Motifs. Journal of Chemical Information and Modeling, 2020, 60, 6147-6154.	5.4	5
33	Leveraging Uncertainty from Deep Learning for Trustworthy Material Discovery Workflows. ACS Omega, 2021, 6, 12711-12721.	3.5	5
34	Template directed formation of nanoparticle decorated multi-walled carbon nanotube bundles with uniform diameter. Nanotechnology, 2011, 22, 435603.	2.6	2
35	Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays. ECS Transactions, 2018, 82, 59-66.	0.5	2
36	Attribution-Driven Explanation of the Deep Neural Network Model via Conditional Microstructure Image Synthesis. ACS Omega, 2022, 7, 2624-2637.	3.5	2

#	Article	IF	CITATIONS
37	Design Parameters for Subwavelength Transparent Conductive Nanolattices. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 35360-35367.	8.0	1
38	Fabrication and 3D tomographic characterization of nanowire arrays and meshes with tunable dimensions from shear-aligned block copolymers. Soft Matter, 2019, 15, 4898-4904.	2.7	1
39	MR-GAN: Manifold Regularized Generative Adversarial Networks for Scientific Data. SIAM Journal on Mathematics of Data Science, 2021, 3, 1197-1222.	1.8	1
40	Synthesis and Characterization of Nanocarbon-Supported Titanium Dioxide. Materials Research Society Symposia Proceedings, 2009, 1174, 31.	0.1	0