Anumita Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3832177/publications.pdf

Version: 2024-02-01

516710 552781 34 731 16 26 citations h-index g-index papers 35 35 35 1239 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synergistic Anticancer Activity of Fluorescent Copper Nanoclusters and Cisplatin Delivered through a Hydrogel Nanocarrier. ACS Applied Materials & Interfaces, 2015, 7, 209-222.	8.0	93
2	Synthesis, characterization and enhanced bactericidal action of a chitosan supported core–shell copper–silver nanoparticle composite. RSC Advances, 2015, 5, 12268-12276.	3.6	58
3	Protein-Based Multifunctional Nanocarriers for Imaging, Photothermal Therapy, and Anticancer Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19495-19501.	8.0	58
4	Modulating enzymatic activity in the presence of gold nanoparticles. RSC Advances, 2012, 2, 4736.	3.6	54
5	The effect of temperature on the aggregation kinetics of partially bare gold nanoparticles. RSC Advances, 2016, 6, 82138-82149.	3.6	53
6	Synthesis of single-particle level white-light-emitting carbon dots <i>via</i> a one-step microwave method. Journal of Materials Chemistry C, 2018, 6, 6691-6697.	5.5	37
7	Observations of the Effect of Anionic, Cationic, Neutral, and Zwitterionic Surfactants on the Belousovâ^'Zhabotinsky Reaction. Journal of Physical Chemistry B, 2005, 109, 9639-9644.	2.6	34
8	Zinc mediated crystalline assembly of gold nanoclusters for expedient hydrogen storage and sensing. Journal of Materials Chemistry A, 2016, 4, 1218-1223.	10.3	32
9	Chemical Locomotives Based on Polymer Supported Catalytic Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 2797-2801.	3.1	28
10	Zincâ€Coordinated Hierarchical Organization of Ligandâ€Stabilized Gold Nanoclusters for Chiral Recognition and Separation. Chemistry - A European Journal, 2017, 23, 9137-9143.	3.3	26
11	Theranostic potential of gold nanoparticle-protein agglomerates. Nanoscale, 2015, 7, 18411-18423.	5.6	23
12	Thumb Imprint Based Detection of Hyperbilirubinemia Using Luminescent Gold Nanoclusters. Scientific Reports, 2016, 6, 39005.	3.3	21
13	An Interactive Quantum Dot and Carbon Dot Conjugate for pHâ€Sensitive and Ratiometric Cu ²⁺ Sensing. ChemPhysChem, 2017, 18, 610-616.	2.1	20
14	Four orders-of-magnitude enhancement in the two-photon excited photoluminescence of homoleptic gold thiolate nanoclusters following zinc ion-induced aggregation. Nanoscale, 2021, 13, 4439-4443.	5.6	19
15	Crystalline nanoscale assembly of gold clusters for reversible storage and sensing of CO ₂ <i>via</i> modulation of photoluminescence intermittency. Journal of Materials Chemistry C, 2018, 6, 8205-8211.	5.5	18
16	Lithography by Simultaneous Chemical and Photochemical Polymerization of Aniline at the Airâ [^] 'Water Interface. Journal of Physical Chemistry B, 2002, 106, 4343-4347.	2.6	17
17	Crystalline assembly of gold nanoclusters for mitochondria targeted cancer theranostics. Journal of Materials Chemistry B, 2018, 6, 1650-1657.	5.8	16
18	White light emission from gold nanoclusters embedded bacteria. Journal of Materials Chemistry C, 2017, 5, 12360-12364.	5.5	14

#	Article	IF	CITATIONS
19	Patterning Design in Color at the Submicron Scale. Nano Letters, 2001, 1, 409-412.	9.1	13
20	Surface-Complexed Zinc Ferrite Magnetofluorescent Nanoparticles for Killing Cancer Cells and Single-Particle-Level Cellular Imaging. ACS Applied Nano Materials, 2018, 1, 2496-2502.	5.0	11
21	Visible Light Excitation-Induced Luminescence from Gold Nanoclusters Following Surface Ligand Complexation with Zn ²⁺ for Daylight Sensing and Cellular Imaging. Langmuir, 2019, 35, 9037-9043.	3.5	11
22	Kinetics of reaction of gold nanoparticles following partial removal of stabilizers. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	10
23	Signatures of specificity of interactions of binary protein mixtures with citrate-stabilized gold nanoparticles. RSC Advances, 2012, 2, 5617.	3.6	9
24	Conformation aspect in the \hat{l}_{\pm} -amylase induced agglomeration of citrate-stabilized gold nanoparticles. RSC Advances, 2013, 3, 23015.	3.6	8
25	Controlling the Chemistry of Nanoclusters: From Atomic Precision to Controlled Assembly. Nanomaterials, 2022, 12, 62.	4.1	8
26	Synergistic Anticancer Potential of Artemisinin When Loaded with 8-Hydroxyquinoline-Surface Complexed-Zinc Ferrite Magnetofluorescent Nanoparticles and Albumin Composite. ACS Applied Bio Materials, 2018, 1, 1229-1235.	4.6	7
27	Few Particle-Level Chromaticity Index-Based Discrimination of Biothiols Using Chemically Interactive Dual-Emitting Nanoprobe. ACS Omega, 2018, 3, 17220-17226.	3.5	5
28	Protein–Nanoparticle Agglomerates as a Plasmonic Magneto-Luminescent Multifunctional Nanocarrier for Imaging and Combination Therapy. ACS Applied Bio Materials, 2019, 2, 3144-3152.	4.6	5
29	Tailoring the luminescence of atomic clusters <i>via</i> ligand exchange reaction mediated post synthetic modification. Physical Chemistry Chemical Physics, 2020, 22, 3959-3964.	2.8	5
30	Zincâ€lonâ€Induced Aggregation of Gold Clusters for Visibleâ€Lightâ€Excitationâ€Based Fluorimetric Discrimination of Geometrical Isomers. ChemPhysChem, 2020, 21, 809-813.	2.1	5
31	Crystallizationâ€Induced Emission Enhancement of Nanoclusters and Oneâ€Step Conversion of "Nanoclusters to Nanoparticles†as the Basis for Intracellular Logic Operations. ChemPhysChem, 2019, 20, 953-958.	2.1	4
32	Galvanic reaction based generation of electronically transparent corrugated Ag–Au nanoparticle thin films. RSC Advances, 2012, 2, 3642.	3.6	3
33	Photo induced chemical modification of surface ligands for aggregation and luminescence modulation of copper nanoclusters in the presence of oxygen. Physical Chemistry Chemical Physics, 2019, 21, 21776-21781.	2.8	3
34	Aggregation induced delayed green fluorescence from assembly of gold nanoclusters: an advanced probe for "background free―pyrophosphate recognition. Materials Advances, 2022, 3, 3286-3292.	5.4	3