
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3832069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review. BioMed Research International, 2013, 2013, 1-11.	1.9	268
2	Minimal standards for the description of new genera and species of rhizobia and agrobacteria. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1852-1863.	1.7	170
3	Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiology Ecology, 2002, 41, 77-84.	2.7	124
4	Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Archives of Microbiology, 2006, 187, 79-85.	2.2	106
5	Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 242-247.	1.7	93
6	Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum. FEMS Microbiology Ecology, 2006, 56, 304-309.	2.7	73
7	Effect of on-field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiology Ecology, 2011, 77, 211-222.	2.7	69
8	Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biology and Biochemistry, 2007, 39, 1744-1750.	8.8	67
9	Colonization of Phaseolus vulgaris nodules by Agrobacterium-like strains. Canadian Journal of Microbiology, 2005, 51, 105-111.	1.7	66
10	Genotypic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in Tunisian soils. Biology and Fertility of Soils, 1999, 28, 313-320.	4.3	63
11	The diversity of rhizobia nodulating chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants. Soil Biology and Biochemistry, 2009, 41, 2568-2572.	8.8	56
12	Appraisal of the crop-rotation effect of rhizobial inoculation on potato cropping systems in relation to soil bacterial communities. Soil Biology and Biochemistry, 2012, 54, 1-6.	8.8	54
13	Distribution and genetic diversity of rhizobia nodulating natural populations of Medicago truncatula in tunisian soils. Soil Biology and Biochemistry, 2004, 36, 903-908.	8.8	51
14	Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 1501-1506.	1.7	47
15	Sinorhizobium americanum symbiovar mediterranense is a predominant symbiont that nodulates and fixes nitrogen with common bean (Phaseolus vulgaris L.) in a Northern Tunisian field. Systematic and Applied Microbiology, 2012, 35, 263-269.	2.8	44
16	Anti-fungal activity of bacterial endophytes associated with legumes against Fusarium solani: Assessment of fungi soil suppressiveness and plant protection induction. Applied Soil Ecology, 2018, 124, 131-140.	4.3	44
17	Efficacy of some rhizospheric and endophytic bacteria in vitro and as seed coating for the control of Fusarium culmorum infecting durum wheat in Tunisia. European Journal of Plant Pathology, 2017, 147, 501-515.	1.7	43
18	Competition for nodule formation between introduced strains of Mesorhizobium ciceri and the native populations of rhizobia nodulating chickpea (Cicer arietinum) in Tunisia. World Journal of Microbiology and Biotechnology, 2007, 23, 1195-1201.	3.6	41

#	Article	IF	CITATIONS
19	Inoculation of Phaseolus vulgaris with the nodule-endophyte Agrobacterium sp. 10C2 affects richness and structure of rhizosphere bacterial communities and enhances nodulation and growth. Archives of Microbiology, 2015, 197, 805-813.	2.2	40
20	Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil. Archives of Microbiology, 2019, 201, 1333-1349.	2.2	37
21	Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates. World Journal of Microbiology and Biotechnology, 2013, 29, 1099-1106.	3.6	36
22	Characterization of rhizobia nodulating chickpea in Tunisia. Agronomy for Sustainable Development, 2001, 21, 577-581.	0.8	32
23	How Cultivar and Extraction Conditions Affect Antioxidants Type and Extractability for Olive Leaves Valorization. ACS Sustainable Chemistry and Engineering, 2020, 8, 5107-5118.	6.7	31
24	Symbiotic diversity of Ensifer meliloti strains recovered from various legume species in Tunisia. Systematic and Applied Microbiology, 2009, 32, 583-592.	2.8	30
25	Diversity of nodule-endophytic agrobacteria-like strains associated with different grain legumes in Tunisia. Systematic and Applied Microbiology, 2011, 34, 524-530.	2.8	27
26	Fertilization of Phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities. Applied Soil Ecology, 2017, 114, 1-8.	4.3	26
27	Inoculation with Elite Strains of Phosphate-Solubilizing Bacteria Enhances the Effectiveness of Fertilization with Rock Phosphates. Geomicrobiology Journal, 2020, 37, 22-30.	2.0	26
28	Genetic diversity of <i>Sinorhizobium</i> populations recovered from different <i>Medicago</i> varieties cultivated in Tunisian soils. Canadian Journal of Microbiology, 2001, 47, 139-147.	1.7	26
29	Competitiveness and symbiotic effectiveness of a R. gallicum strain isolated from root nodules of Phaseolus vulgaris. European Journal of Agronomy, 2005, 22, 209-216.	4.1	25
30	Selection of High Nitrogenâ€Fixing Rhizobia Nodulating Chickpea (<i>Cicer arietinum</i>) for Semiâ€Arid Tunisia. Journal of Agronomy and Crop Science, 2008, 194, 413-420.	3.5	22
31	Rhizobium gallicum as an efficient symbiont for bean cultivation. Agronomy for Sustainable Development, 2007, 27, 331-336.	5.3	20
32	Inefficient nodulation of chickpea (Cicer arietinum L.) in the arid and Saharan climates in Tunisia bySinorhizobium meliloti biovarmedicaginis. Annals of Microbiology, 2007, 57, 15-19.	2.6	20
33	Nodule Senescence in Medicago truncatula–Sinorhizobium Symbiosis Under Abiotic Constraints: Biochemical and Structural Processes Involved in Maintaining Nitrogen-Fixing Capacity. Journal of Plant Growth Regulation, 2011, 30, 480-489.	5.1	20
34	Potential Hepatoprotective Activity of Super Critical Carbon Dioxide Olive Leaf Extracts against CCl4-Induced Liver Damage. Foods, 2020, 9, 804.	4.3	20
35	Genetic diversity and salt tolerance of Sinorhizobium populations from two Tunisian soils. Annals of Microbiology, 2010, 60, 541-547.	2.6	19
36	Potential for inoculation of common bean by effective rhizobia in Tunisian soils. Agronomy for Sustainable Development, 1997, 17, 445-454.	0.8	19

#	Article	IF	CITATIONS
37	Fluazifop-P-butyl (herbicide) affects richness and structure of soil bacterial communities. Soil Biology and Biochemistry, 2015, 81, 89-97.	8.8	16
38	Marinated Anchovies (Engraulis encrasicolus) Prepared with Flavored Olive Oils (Chétoui cv.): Anisakicidal Effect, Microbiological, and Sensory Evaluation. Sustainability, 2021, 13, 5310.	3.2	15
39	Diversity of Sinorhizobium Meliloti and S. medicae Nodulating Medicago Truncatula According to Host and Soil Origins. World Journal of Microbiology and Biotechnology, 2005, 21, 1009-1015.	3.6	14
40	Genetic diversity and salt tolerance of bacterial communities from two Tunisian soils. Annals of Microbiology, 2009, 59, 25-32.	2.6	14
41	Proximate composition, lipid and phenolic profiles, and antioxidant activity of different ecotypes of Lupinus albus, Lupinus luteus and lupinus angustifolius. Journal of Food Measurement and Characterization, 2021, 15, 1241-1257.	3.2	13
42	The antibiosis of nodule-endophytic agrobacteria and its potential effect on nodule functioning of Phaseolus vulgaris. Archives of Microbiology, 2012, 194, 1013-1021.	2.2	12
43	Growth capacity and biochemical mechanisms involved in rhizobia tolerance to salinity and water deficit. Journal of Basic Microbiology, 2015, 55, 451-461.	3.3	12
44	Protists modulate Fusarium root rot suppression by beneficial bacteria. Applied Soil Ecology, 2021, 168, 104158.	4.3	12
45	Nodulation and growth of common bean under NaCl-stress. Soil Biology and Biochemistry, 1998, 30, 1473-1475.	8.8	11
46	Biocontrol of Rhizoctonia solani using volatile organic compounds of solanaceae seed-borne endophytic bacteria. Postharvest Biology and Technology, 2021, 181, 111655.	6.0	11
47	Inoculation of Phaseolus vulgaris, Medicago laciniata and Medicago polymorpha with Agrobacterium sp. strain 10C2 may enhance nodulation and shoot dry weight but does not affect host range specificity. Annals of Microbiology, 2012, 62, 1811-1817.	2.6	10
48	Phoma medicaginis colonizes Medicago truncatula root nodules and affects nitrogen fixation capacity. European Journal of Plant Pathology, 2015, 141, 375-383.	1.7	10
49	Response of intercropped barley and fenugreek to mono- and co-inoculation with Sinorhizobium meliloti F42 and Variovorax paradoxus F310 under contrasting agroclimatic regions. Archives of Microbiology, 2021, 203, 1657-1670.	2.2	10
50	Improvements of Durum Wheat Main Crop in Weed Control, Productivity and Grain Quality through the Inclusion of FenuGreek and Clover as Companion Plants: Effect of N FertilizaTion Regime. Agronomy, 2021, 11, 78.	3.0	10
51	Diversity of rhizobia nodulating sulla (Hedysarum coronarium L.) and selection of inoculant strains for semi-arid Tunisia. Annals of Microbiology, 2012, 62, 77-84.	2.6	8
52	Diversity and geographic distribution of fungal strains infecting field-grown common bean (Phaseolus vulgaris L.) in Tunisia. European Journal of Plant Pathology, 2019, 153, 947-955.	1.7	8
53	Salt tolerance of a Sinorhizobium meliloti strain isolated from dry lands: growth capacity and protein profile changes. Annals of Microbiology, 2011, 61, 361-369.	2.6	7
54	Genotypic and symbiotic diversity of native rhizobia nodulating red pea (Lathyrus cicera L.) in Tunisia. Systematic and Applied Microbiology, 2020, 43, 126049.	2.8	7

#	Article	IF	CITATIONS
55	Industrial-Scale Study of the Chemical Composition of Olive Oil Process-Derived Matrices. Processes, 2020, 8, 701.	2.8	7
56	Inoculation of Lupinus albus with the nodule-endophyte Paenibacillus glycanilyticus LJ121 improves grain nutritional quality. Archives of Microbiology, 2020, 202, 283-291.	2.2	6
57	Evaluation of antifungal activity from Bacillus strains against Rhizoctonia solani. African Journal of Biotechnology, 2012, 11, .	0.6	4
58	High-quality permanent draft genome sequence of Ensifer meliloti strain 4H41, an effective salt- and drought-tolerant microsymbiont of Phaseolus vulgaris. Standards in Genomic Sciences, 2015, 10, 34.	1.5	4
59	Nodules and roots of Vicia faba are inhabited by quite different populations of associated bacteria. Applied Soil Ecology, 2017, 119, 72-79.	4.3	4
60	Potentialities and soil impact analysis of rock phosphorus fertilization of perennial and annual legume crops. Archives of Agronomy and Soil Science, 2020, 66, 1074-1088.	2.6	3
61	Contrasting effects of the inoculation time with passenger endophytic Agrobacterium sp.10C2 on the nodule functioning and growth of Medicago truncatula. Rhizosphere, 2022, 22, 100505.	3.0	1
62	Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiology Ecology, 2002, 41, 77-84.	2.7	1