
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3831935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurology, The, 2011, 10, 978-986.	10.2	468
2	Cryptogenic Stroke and High-Risk Patent Foramen Ovale. Journal of the American College of Cardiology, 2018, 71, 2335-2342.	2.8	388
3	Stroke Statistics in Korea: Part I. Epidemiology and Risk Factors: A Report from the Korean Stroke Society and Clinical Research Center for Stroke. Journal of Stroke, 2013, 15, 2.	3.2	283
4	Association of Ischemic Lesion Patterns on Early Diffusion-Weighted Imaging With TOAST Stroke Subtypes. Archives of Neurology, 2003, 60, 1730.	4.5	256
5	Significance of Susceptibility Vessel Sign on T2*-Weighted Gradient Echo Imaging for Identification of Stroke Subtypes. Stroke, 2005, 36, 2379-2383.	2.0	199
6	Significance of Acute Multiple Brain Infarction on Diffusion-Weighted Imaging. Stroke, 2000, 31, 688-694.	2.0	191
7	Brain hemorrhage recurrence, small vessel disease type, and cerebral microbleeds. Neurology, 2017, 89, 820-829.	1.1	180
8	Deep into the Brain: Artificial Intelligence in Stroke Imaging. Journal of Stroke, 2017, 19, 277-285.	3.2	179
9	Lesion Patterns and Stroke Mechanism in Atherosclerotic Middle Cerebral Artery Disease. Stroke, 2005, 36, 2583-2588.	2.0	177
10	Early ischemic lesion recurrence within a week after acute ischemic stroke. Annals of Neurology, 2003, 54, 66-74.	5.3	160
11	Efficacy and Safety of Combination Antiplatelet Therapies in Patients With Symptomatic Intracranial Atherosclerotic Stenosis. Stroke, 2011, 42, 2883-2890.	2.0	126
12	Machine Learning Approach to Identify Stroke Within 4.5 Hours. Stroke, 2020, 51, 860-866.	2.0	116
13	Magnetic Resonance Imaging in Acute Ischemic Stroke Treatment. Journal of Stroke, 2014, 16, 131.	3.2	111
14	New ischemic lesions coexisting with acute intracerebral hemorrhage. Neurology, 2012, 79, 848-855.	1.1	93
15	Safety and Efficacy of MRI-Based Thrombolysis in Unclear-Onset Stroke. Cerebrovascular Diseases, 2008, 25, 572-579.	1.7	89
16	Intracranial Cerebral Artery Disease as a Risk Factor for Central Nervous System Complications of Coronary Artery Bypass Graft Surgery. Stroke, 2001, 32, 94-99.	2.0	80
17	Stroke Risk After Coronary Artery Bypass Graft Surgery and Extent of Cerebral Artery Atherosclerosis. Journal of the American College of Cardiology, 2011, 57, 1811-1818.	2.8	80
18	Lesion Patterns and Mechanism of Ischemia in Internal Carotid Artery Disease. Archives of Neurology, 2002, 59, 1577.	4.5	78

#	Article	IF	CITATIONS
19	Acute Brain Lesions on Magnetic Resonance Imaging and Delayed Neurological Sequelae in Carbon Monoxide Poisoning. JAMA Neurology, 2018, 75, 436.	9.0	74
20	Rivaroxaban vs Warfarin Sodium in the Ultra-Early Period After Atrial Fibrillation–Related Mild Ischemic Stroke. JAMA Neurology, 2017, 74, 1206.	9.0	72
21	Prevention of cardiovascular events in Asian patients with ischaemic stroke at high risk of cerebral haemorrhage (PICASSO): a multicentre, randomised controlled trial. Lancet Neurology, The, 2018, 17, 509-518.	10.2	72
22	Isolated MCA Disease in Patients Without Significant Atherosclerotic Risk Factors. Stroke, 2015, 46, 697-703.	2.0	62
23	Vascular Tortuosity May Be Associated With Cervical Artery Dissection. Stroke, 2016, 47, 2548-2552.	2.0	62
24	Vascular Tortuosity May Be Related to Intracranial Artery Atherosclerosis. International Journal of Stroke, 2015, 10, 1081-1086.	5.9	61
25	Stroke Connectome and Its Implications for Cognitive and Behavioral Sequela of Stroke. Journal of Stroke, 2015, 17, 256-267.	3.2	61
26	Inflammatory and Hemostatic Biomarkers Associated With Early Recurrent Ischemic Lesions in Acute Ischemic Stroke. Stroke, 2009, 40, 1653-1658.	2.0	59
27	Reperfusion Therapy in Unclear-Onset Stroke Based on MRI Evaluation (RESTORE). Stroke, 2012, 43, 3278-3283.	2.0	59
28	Ischemic Stroke in Patients with Cancer: Is it Different from Usual Strokes?. International Journal of Stroke, 2014, 9, 406-412.	5.9	58
29	Post-stroke cognitive impairment as an independent predictor of ischemic stroke recurrence: PICASSO sub-study. Journal of Neurology, 2020, 267, 688-693.	3.6	56
30	Predictors of Recurrent Stroke in Patients With Symptomatic Intracranial Arterial Stenosis. Stroke, 2012, 43, 2785-2787.	2.0	54
31	Recurrent Ischemic Lesions After Acute Atherothrombotic Stroke. Stroke, 2016, 47, 2323-2330.	2.0	54
32	Silent Ischemic Lesion Recurrence on Magnetic Resonance Imaging Predicts Subsequent Clinical Vascular Events. Archives of Neurology, 2006, 63, 1730.	4.5	52
33	Homocysteine, small-vessel disease, and atherosclerosis. Neurology, 2014, 83, 695-701.	1.1	52
34	Intracranial and extracranial arterial dissection presenting with ischemic stroke: Lesion location and stroke mechanism. Journal of the Neurological Sciences, 2015, 358, 371-376.	0.6	48
35	Real-Time Strategy Video Game Experience and Visual Perceptual Learning. Journal of Neuroscience, 2015, 35, 10485-10492.	3.6	47
36	Risk Factors Associated With the Presence of Unruptured Intracranial Aneurysms. Stroke, 2015, 46, 3093-3098.	2.0	47

#	Article	IF	CITATIONS
37	Quantitative Measurements of Relative Fluid-Attenuated Inversion Recovery (FLAIR) Signal Intensities in Acute Stroke for the Prediction of Time from Symptom Onset. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 76-84.	4.3	46
38	New brain infarcts on magnetic resonance imaging after coronary artery bypass graft surgery: Lesion patterns, mechanism, and predictors. Annals of Neurology, 2014, 76, 347-355.	5.3	46
39	Early Recurrent Ischemic Lesions on Diffusion-Weighted Imaging in Symptomatic Intracranial Atherosclerosis. Archives of Neurology, 2007, 64, 50.	4.5	44
40	Modest Blood Pressure Reduction with Valsartan in Acute Ischemic Stroke: A Prospective, Randomized, Open-Label, Blinded-End-Point Trial. International Journal of Stroke, 2015, 10, 745-751.	5.9	44
41	Intra-arterial thrombectomy for acute ischaemic stroke patients with active cancer. Journal of Neurology, 2019, 266, 2286-2293.	3.6	43
42	Wake-Up or Unclear-Onset Strokes: Are they Waking up to the World of Thrombolysis Therapy?. International Journal of Stroke, 2012, 7, 311-320.	5.9	41
43	Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms. Korean Journal of Radiology, 2019, 20, 1275.	3.4	40
44	Mechanism of multiple infarcts in multiple cerebral circulations on diffusion-weighted imaging. Journal of Neurology, 2007, 254, 924-930.	3.6	38
45	Validity of Acute Stroke Lesion Volume Estimation by Diffusion-Weighted Imaging–Alberta Stroke Program Early Computed Tomographic Score Depends on Lesion Location in 496 Patients With Middle Cerebral Artery Stroke. Stroke, 2014, 45, 3583-3588.	2.0	36
46	Right–Left Propensity and Lesion Patterns Between Cardiogenic and Aortogenic Cerebral Embolisms. Stroke, 2011, 42, 2323-2325.	2.0	35
47	Focal Fluid-Attenuated Inversion Recovery Hyperintensity Within Acute Diffusion-Weighted Imaging Lesions Is Associated With Symptomatic Intracerebral Hemorrhage After Thrombolysis. Stroke, 2008, 39, 3424-3426.	2.0	33
48	Difference in Infarct Volume and Patterns between Cardioembolism and Internal Carotid Artery Disease: Focus on the Degree of Cardioembolic Risk and Carotid Stenosis. Cerebrovascular Diseases, 2010, 29, 490-496.	1.7	33
49	Digital Therapeutics: Emerging New Therapy for Neurologic Deficits after Stroke. Journal of Stroke, 2019, 21, 242-258.	3.2	33
50	The Shape of Middle Cerebral Artery and Plaque Location: High-Resolution MRI Finding. International Journal of Stroke, 2015, 10, 856-860.	5.9	31
51	Comparison of High-Resolution MR Imaging and Digital Subtraction Angiography for the Characterization and Diagnosis of Intracranial Artery Disease. American Journal of Neuroradiology, 2016, 37, 2245-2250.	2.4	30
52	Prognostic Significance of Troponin Elevation for Long-Term Mortality after Ischemic Stroke. Journal of Stroke, 2017, 19, 312-322.	3.2	30
53	Intracranial Atherosclerosis: Incidence, Diagnosis and Treatment. Journal of Clinical Neurology		

#	Article	IF	CITATIONS
55	Cardiac Vulnerability to Cerebrogenic Stress as a Possible Cause of Troponin Elevation in Stroke. Journal of the American Heart Association, 2016, 5, .	3.7	29
56	Comparison of 3D magnetic resonance imaging and digital subtraction angiography for intracranial artery stenosis. European Radiology, 2017, 27, 4737-4746.	4.5	29
57	Provoked Right-to-Left Shunt in Patent Foramen Ovale Associates With Ischemic Stroke in Posterior Circulation. Stroke, 2014, 45, 3707-3710.	2.0	28
58	Unclear-onset stroke: Daytime-unwitnessed stroke vs. wake-up stroke. International Journal of Stroke, 2016, 11, 212-220.	5.9	28
59	Machine Learning–Based Automatic Rating for Cardinal Symptoms of Parkinson Disease. Neurology, 2021, 96, e1761-e1769.	1.1	28
60	Biochemical Aspirin Resistance and Recurrent Lesions in Patients with Acute Ischemic Stroke. European Neurology, 2010, 64, 51-57.	1.4	26
61	Silent New Brain Lesions: Innocent Bystander or Guilty Party?. Journal of Stroke, 2016, 18, 38-49.	3.2	26
62	Reduction of Midline Shift Following Decompressive Hemicraniectomy for Malignant Middle Cerebral Artery Infarction. Journal of Stroke, 2016, 18, 328-336.	3.2	24
63	Multidisciplinary Approach to Decrease In-Hospital Delay for Stroke Thrombolysis. Journal of Stroke, 2017, 19, 196-204.	3.2	24
64	Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke. Communications Medicine, 2021, 1, .	4.2	24
65	The Second Elevation of Neuron-Specific Enolase Peak after Ischemic Stroke Is Associated with Hemorrhagic Transformation. Journal of Stroke and Cerebrovascular Diseases, 2014, 23, 2437-2443.	1.6	23
66	Nonatheroscleotic Isolated Middle Cerebral Artery Disease May Be Early Manifestation of Moyamoya Disease. Stroke, 2016, 47, 2229-2235.	2.0	23
67	Spontaneous and Unruptured Chronic Intracranial Artery Dissection. Clinical Neuroradiology, 2018, 28, 171-181.	1.9	23
68	Cilostazol Versus Aspirin in Ischemic Stroke Patients With High-Risk Cerebral Hemorrhage. Stroke, 2020, 51, 931-937.	2.0	23
69	The Difference in Perceptions of Educational Need Between Epilepsy Patients and Medical Personnel. Epilepsia, 2001, 42, 785-789.	5.1	22
70	Early infarct growth predicts long-term clinical outcome after thrombolysis. Journal of the Neurological Sciences, 2012, 316, 99-103.	0.6	22
71	Silent new ischemic lesions after index stroke and the risk of future clinical recurrent stroke. Neurology, 2016, 86, 277-285.	1.1	22
72	Deep Learning-Based Method to Differentiate Neuromyelitis Optica Spectrum Disorder From Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 599042.	2.4	22

#	Article	IF	CITATIONS
73	Differential patterns of evolution in acute middle cerebral artery infarction with perfusion–diffusion mismatch: Atherosclerotic vs. cardioembolic occlusion. Journal of the Neurological Sciences, 2008, 273, 93-98.	0.6	21
74	Diffusion-Weighted Image and Fluid-Attenuated Inversion Recovery Image Mismatch. Stroke, 2014, 45, 450-455.	2.0	20
75	CYP2C19 Genotype and Early Ischemic Lesion Recurrence in Stroke Patients Treated with Clopidogrel. Journal of Stroke and Cerebrovascular Diseases, 2015, 24, 440-446.	1.6	20
76	Early infarct growth predicts long-term clinical outcome in ischemic stroke. Journal of the Neurological Sciences, 2014, 347, 205-209.	0.6	19
77	Quantitative Analysis Using Highâ€Resolution 3T MRI in Acute Intracranial Artery Dissection. Journal of Neuroimaging, 2016, 26, 612-617.	2.0	18
78	Intracranial Aneurysm Is Associated with High Intracranial Artery Tortuosity. World Neurosurgery, 2018, 112, e876-e880.	1.3	18
79	Structural and Functional Connectivity Changes Beyond Visual Cortex in a Later Phase of Visual Perceptual Learning. Scientific Reports, 2018, 8, 5186.	3.3	17
80	Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression. Journal of Stroke, 2020, 22, 403-406.	3.2	17
81	Lesion volume increase is related to neurologic progression in patients with subcortical infarction. Journal of the Neurological Sciences, 2009, 284, 163-167.	0.6	15
82	Fully Automated and Real-Time Volumetric Measurement of Infarct Core and Penumbra in Diffusion- and Perfusion-Weighted MRI of Patients with Hyper-Acute Stroke. Journal of Digital Imaging, 2020, 33, 262-272.	2.9	15
83	Repeatability of amide proton transfer–weighted signals in the brain according to clinical condition and anatomical location. European Radiology, 2020, 30, 346-356.	4.5	15
84	Lesion Location-Based Prediction of Visual Field Improvement after Cerebral Infarction. PLoS ONE, 2015, 10, e0143882.	2.5	13
85	Patent Foramen Ovale Closure in Old Stroke Patients: A Subgroup Analysis of the DEFENSE-PFO Trial. Journal of Stroke, 2021, 23, 289-292.	3.2	13
86	Pharmacologically Induced Hypertension Therapy for Acute Stroke Patients. Journal of Stroke, 2019, 21, 228-230.	3.2	13
87	Color-Coded Fluid-Attenuated Inversion Recovery Images Improve Inter-Rater Reliability of Fluid-Attenuated Inversion Recovery Signal Changes Within Acute Diffusion-Weighted Image Lesions. Stroke, 2014, 45, 2801-2804.	2.0	12
88	Lateral Medullary Infarction with or without Extra-Lateral Medullary Lesions: What Is the Difference?. Cerebrovascular Diseases, 2018, 45, 132-140.	1.7	11
89	Reliability of fast magnetic resonance imaging for acute ischemic stroke patients using a 1.5-T scanner. European Radiology, 2019, 29, 2641-2650.	4.5	11
90	Imaging Atherosclerosis in the Carotid Arteries with F-18-Fluoro-2-deoxy-D-glucose Positron Emission Tomography: Effect of Imaging Time after Injection on Quantitative Measurement. Nuclear Medicine and Molecular Imaging, 2010, 44, 261-266.	1.0	10

#	Article	IF	CITATIONS
91	Effect of Statin on Progression of Symptomatic Intracranial Atherosclerosis. Canadian Journal of Neurological Sciences, 2012, 39, 801-806.	0.5	10

Analysis of Risk Factors for Cerebral Microinfarcts after Carotid Endarterectomy and the Relevance

#	Article	IF	CITATIONS
109	The Effect of Cilostazol on Carotid Intima–Media Thickness Progression in Patients with Symptomatic Intracranial Atherosclerotic Stenosis. Journal of Stroke and Cerebrovascular Diseases, 2014, 23, 1164-1170.	1.6	6
110	Intracranial Artery Steno-Occlusion: Diagnosis by Using Two-dimensional Spatially Selective Radiofrequency Excitation Pulse MR Imaging. Radiology, 2017, 284, 834-843.	7.3	6
111	The Impact of Cerebral Atherosclerosis According to Location on Prognosis after Coronary Artery Bypass Grafting. Cerebrovascular Diseases, 2018, 46, 200-209.	1.7	6
112	Are Genetic Variants Associated with the Location of Cerebral Arterial Lesions in Stroke Patients?. Cerebrovascular Diseases, 2020, 49, 262-268.	1.7	6
113	Effects of Appointing a Full-Time Neurointensivist to Run a Closed-Type Neurological Intensive Care		

#	Article	IF	CITATIONS
127	Modeling and simulation to predict the degree of disability over time in acute ischemic stroke patients. Clinical and Translational Science, 2021, 14, 1988-1996.	3.1	1
128	Petroclival Meningioma Accompanying Posterior Cerebral Artery Infarction. Journal of Stroke, 2016, 18, 114-116.	3.2	1
129	Abstract TP131: Factors Influencing the Prognosis of Symptomatic and Asymptomatic Intracranial Atherosclerosis after Antiplatelet treatment: Substudy of Trials of Cilostazol in Symptomatic Intracranial Stenosis -2. Stroke, 2013, 44, .	2.0	0
130	Deep Learning Approach Using Diffusion-Weighted Imaging to Estimate the Severity of Aphasia in Stroke Patients. Journal of Stroke, 2022, 24, 108-117.	3.2	0
131	Blood Pressure Variability Can Predict Carotid Sinus Reaction after Carotid Stenting. American Journal of Hypertension, 0, , .	2.0	0