Yuming Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3831767/publications.pdf

Version: 2024-02-01

95 papers 4,208 citations

35 h-index 63 g-index

96 all docs 96
docs citations

96 times ranked 5362 citing authors

#	Article	IF	CITATIONS
1	In situ light-assisted preparation of MoS ₂ on graphitic C ₃ N ₄ nanosheets for enhanced photocatalytic H ₂ production from water. Journal of Materials Chemistry A, 2015, 3, 7375-7381.	10.3	274
2	Highly Dispersed CeO ₂ on TiO ₂ Nanotube: A Synergistic Nanocomposite with Superior Peroxidase-Like Activity. ACS Applied Materials & Superior Peroxidase-Like Activity.	8.0	257
3	A facile route to controlled synthesis of Co ₃ O ₄ nanoparticles and their environmental catalytic properties. Nanotechnology, 2007, 18, 435602.	2.6	230
4	Light-assisted rapid preparation of a Ni/g-C $<$ sub $>3<$ sub $>N<$ sub $>4<$ sub $>$ magnetic composite for robust photocatalytic H $<$ sub $>2<$ sub $>$ evolution from water. Journal of Materials Chemistry A, 2016, 4, 9998-10007.	10.3	181
5	Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon, 2020, 160, 342-352.	10.3	165
6	A photochemical synthesis route to typical transition metal sulfides as highly efficient cocatalyst for hydrogen evolution: from the case of NiS/g-C3N4. Applied Catalysis B: Environmental, 2018, 225, 284-290.	20.2	157
7	Light-Assisted Preparation of a ZnO/CdS Nanocomposite for Enhanced Photocatalytic H ₂ Evolution: An Insight into Importance of in Situ Generated ZnS. ACS Sustainable Chemistry and Engineering, 2015, 3, 969-977.	6.7	154
8	A special synthesis of BiOCl photocatalyst for efficient pollutants removal: New insight into the band structure regulation and molecular oxygen activation. Applied Catalysis B: Environmental, 2019, 256, 117872.	20.2	136
9	î²-MnO2 nanowires: A novel ozonation catalyst for water treatment. Applied Catalysis B: Environmental, 2009, 85, 155-161.	20.2	128
10	Novel magnetically separable nanomaterials for heterogeneous catalytic ozonation of phenol pollutant: NiFe2O4 and their performances. Chemical Engineering Journal, 2013, 219, 295-302.	12.7	109
11	Photochemical synthesis of CoxP as cocatalyst for boosting photocatalytic H2 production via spatial charge separation. Applied Catalysis B: Environmental, 2017, 211, 245-251.	20.2	102
12	Noble-Metal-Free Iron Phosphide Cocatalyst Loaded Graphitic Carbon Nitride as an Efficient and Robust Photocatalyst for Hydrogen Evolution under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2017, 5, 8053-8060.	6.7	100
13	A General Strategy To Fabricate Ni _{<i>x</i>} P as Highly Efficient Cocatalyst via Photoreduction Deposition for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2017, 5, 6845-6853.	6.7	86
14	Catalytic activity and stability of Y zeolite for phenol degradation in the presence of ozone. Applied Catalysis B: Environmental, 2008, 82, 163-168.	20.2	84
15	Simple hydrothermal preparation of \hat{l}_{\pm} -, \hat{l}^2 -, and \hat{l}^3 -MnO ₂ and phase sensitivity in catalytic ozonation. RSC Advances, 2014, 4, 39167.	3.6	83
16	Catalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral brucite. Catalysis Communications, 2007, 8, 1599-1603.	3.3	81
17	An $\hat{l}\pm$ -MnO ₂ nanotube used as a novel catalyst in ozonation: performance and the mechanism. New Journal of Chemistry, 2014, 38, 1743-1750.	2.8	80
18	Insight into the Crucial Factors for Photochemical Deposition of Cobalt Cocatalysts on g-C ₃ N ₄ Photocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 9522-9531.	8.0	79

#	Article	IF	Citations
19	Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 261, 118233.	20.2	68
20	Fabrication of a Z-Scheme $\{001\}/\{110\}$ Facet Heterojunction in BiOCl to Promote Spatial Charge Separation. ACS Applied Materials & Separation. ACS Applied Materials & Separation. ACS Applied Materials & Separation.	8.0	67
21	A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C ₃ N ₄ with highly enhanced photocatalytic activity under simulated sunlight. New Journal of Chemistry, 2018, 42, 12180-12187.	2.8	66
22	ZnAl2O4 as a novel high-surface-area ozonation catalyst: One-step green synthesis, catalytic performance and mechanism. Chemical Engineering Journal, 2015, 260, 623-630.	12.7	65
23	Ternary graphitic carbon nitride/red phosphorus/molybdenum disulfide heterostructure: An efficient and low cost photocatalyst for visible-light-driven H2 evolution from water. Carbon, 2017, 119, 56-61.	10.3	60
24	A high-surface-area mesoporous sulfated nano-titania solid superacid catalyst with exposed (101) facets for esterification: facile preparation and catalytic performance. New Journal of Chemistry, 2014, 38, 4541.	2.8	57
25	Photoelectrochemical Generation of Hydrogen from Water Using a CdSe Quantum Dot-Sensitized Photocathode. ACS Catalysis, 2015, 5, 2255-2259.	11.2	55
26	An insight into the kinetics and interface sensitivity for catalytic ozonation: the case of nano-sized NiFe ₂ O ₄ . Catalysis Science and Technology, 2014, 4, 494-501.	4.1	54
27	Transitionâ€Metalâ€Based Cocatalysts for Photocatalytic Water Splitting. Small Structures, 2022, 3, .	12.0	53
28	Superior peroxidase mimetic activity of carbon dots–Pt nanocomposites relies on synergistic effects. New Journal of Chemistry, 2015, 39, 4141-4146.	2.8	52
29	Facile preparation of a ZnS/ZnO nanocomposite for robust sunlight photocatalytic H ₂ evolution from water. RSC Advances, 2015, 5, 6494-6500.	3.6	49
30	Enzyme-Initiated Quinone-Chitosan Conjugation Chemistry: Toward A General <i>in Situ</i> Strategy for High-Throughput Photoelectrochemical Enzymatic Bioanalysis. Analytical Chemistry, 2018, 90, 1492-1497.	6.5	48
31	Single atoms or not? The limitation of EXAFS. Applied Physics Letters, 2020, 116, .	3.3	46
32	Simple one-pot synthesis of ZnO/Ag heterostructures and the application in visible-light-responsive photocatalysis. RSC Advances, 2014, 4, 7340-7346.	3.6	45
33	Efficient Photoelectrochemical Hydrogen Generation from Water Using a Robust Photocathode Formed by CdTe QDs and Nickel Ion. ACS Sustainable Chemistry and Engineering, 2015, 3, 2429-2434.	6.7	45
34	Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms. Chinese Journal of Catalysis, 2022, 43, 1774-1804.	14.0	45
35	Create a strong internal electric-field on PDI photocatalysts for boosting phenols degradation via preferentially exposing π-conjugated planes up to 100%. Applied Catalysis B: Environmental, 2022, 300, 120762.	20.2	43
36	Facile synthesis of N–F codoped and molecularly imprinted TiO2 for enhancing photocatalytic degradation of target contaminants. Applied Surface Science, 2016, 364, 829-836.	6.1	35

3

#	Article	IF	Citations
37	Efficient and Stable MoS ₂ /CdSe/NiO Photocathode for Photoelectrochemical Hydrogen Generation from Water. Chemistry - an Asian Journal, 2015, 10, 1660-1667.	3.3	31
38	A novel g-C ₃ N ₄ based photocathode for photoelectrochemical hydrogen evolution. RSC Advances, 2016, 6, 7465-7473.	3.6	30
39	Improving the photocatalytic activity of benzyl alcohol oxidation by Z-scheme SnS/g-C ₃ N ₄ . New Journal of Chemistry, 2021, 45, 6611-6617.	2.8	30
40	A New pâ€Metalâ€n Structure AgBrâ€Agâ€BiOBr with Superior Visibleâ€Lightâ€Responsive Catalytic Performanc Chemistry - an Asian Journal, 2015, 10, 687-693.	e. 3.3	28
41	Photoswitching enzymatic activity of horseradish peroxidase by graphene oxide for colorimetric immunoassay. Biosensors and Bioelectronics, 2019, 145, 111707.	10.1	26
42	Acid Phosphatase Invoked Exquisite Enzyme Cascade for Amplified Colorimetric Bioassay. ACS Sustainable Chemistry and Engineering, 2019, 7, 7572-7579.	6.7	26
43	Novel Ti and Mn Mesoporous Molecular Sieves: Synthesis, Characterization and Catalytic Activity in the Epoxidation of Vegetable Oil. Catalysis Letters, 2010, 137, 88-93.	2.6	25
44	A novel photoswitchable enzyme cascade for powerful signal amplification in versatile bioassays. Chemical Communications, 2017, 53, 11165-11168.	4.1	25
45	A novel visible-light-driven ternary Ag@Ag ₂ O/BiOCl Z-scheme photocatalyst with enhanced removal efficiency of RhB. New Journal of Chemistry, 2019, 43, 13929-13937.	2.8	25
46	Zinc glycerolate with lanthanum stearate to inhibit the thermal degradation of poly(vinyl chloride). Journal of Applied Polymer Science, 2013, 127, 3681-3686.	2.6	23
47	Synthesis of Mo-doped TiO ₂ nanowires/reduced graphene oxide composites with enhanced photodegradation performance under visible light irradiation. RSC Advances, 2016, 6, 23809-23815.	3.6	23
48	Modified cellulose nanocrystals enhancement to mechanical properties and water resistance of vegetable oilâ€based waterborne polyurethane. Journal of Applied Polymer Science, 2019, 136, 48228.	2.6	23
49	Novel Twoâ€Phase Catalysis with Organometallic Compounds for Epoxidation of Vegetable Oils by Hydrogen Peroxide. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 83-91.	1.9	22
50	A facile solvothermal approach for the synthesis of novel W-doped TiO ₂ nanoparticles/reduced graphene oxide composites with enhanced photodegradation performance under visible light irradiation. New Journal of Chemistry, 2017, 41, 13382-13390.	2.8	22
51	TiO2 hollow heterophase junction with enhanced pollutant adsorption, light harvesting, and charge separation for photocatalytic degradation of volatile organic compounds. Chemical Engineering Journal, 2020, 391, 123602.	12.7	20
52	The value-added utilization of glycerol for the synthesis of glycerol carbonate catalyzed with a novel porous ZnO catalyst. RSC Advances, 2016, 6, 76223-76230.	3.6	19
53	Switched photoelectrochemistry of carbon dots for split-type immunoassay. Analytica Chimica Acta, 2018, 1014, 19-26.	5.4	17
54	A novel ternary MQDs/NCDs/TiO ₂ nanocomposite that collaborates with activated persulfate for efficient RhB degradation under visible light irradiation. New Journal of Chemistry, 2021, 45, 1327-1338.	2.8	17

#	Article	IF	Citations
55	One-step preparation of nickel sulfide/nickel hydroxide films for electrocatalytic hydrogen generation from water. RSC Advances, 2015, 5, 60674-60680.	3.6	16
56	Ferricyanide stimulated cathodic photoelectrochemistry of flower-like bismuth oxyiodide under ambient air: A general strategy for robust bioanalysis. Sensors and Actuators B: Chemical, 2019, 288, 683-690.	7.8	16
57	Controllable photochemical synthesis of amorphous Ni(OH)2 as hydrogen production cocatalyst using inorganic phosphorous acid as sacrificial agent. Chinese Journal of Catalysis, 2020, 41, 889-897.	14.0	16
58	The construction of a wide-spectrum-responsive and high-activity photocatalyst, Bi ₂₅ CoO ₄₀ , <i>via</i> the creation of large external dipoles. Journal of Materials Chemistry A, 2021, 9, 3616-3627.	10.3	15
59	Monodisperse Ni-clusters anchored on carbon nitride for efficient photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2022, 43, 536-545.	14.0	15
60	Photochemical synthesis of Ni-Ni(OH)2 synergistic cocatalysts hybridized with CdS nanorods for efficient photocatalytic hydrogen evolution. FlatChem, 2021, 26, 100232.	5.6	14
61	Construction of quantum-scale catalytic regions on anatase TiO2 nanoparticles by loading TiO2 quantum dots for the photocatalytic degradation of VOCs. Ceramics International, 2021, 47, 21090-21098.	4.8	14
62	Acidic–Basic Bifunctional Magnetic Mesoporous CoFe2O4@(CaO–ZnO) for the Synthesis of Glycerol Carbonate. Catalysis Letters, 2020, 150, 2863-2872.	2.6	13
63	Simultaneous photocatalytic tetracycline oxidation and chromate reduction <i>via</i> a jointed synchronous pathway upon Z-scheme Bi ₁₂ O ₁₇ Cl ₂ /AgBr: insight into intermediates and mechanism. Environmental Science: Nano, 2022, 9, 1780-1793.	4.3	13
64	Enzymatic in situ generation of covalently conjugated electron acceptor of PbSe quantum dots for high throughput and versatile photoelectrochemical bioanalysis. Analytica Chimica Acta, 2019, 1058, 1-8.	5.4	12
65	3D Macro-Mesoporous TiO ₂ -Graphene Oxide (GO) Composite with Enhanced Catalytic Performance in the Epoxidation of Styrene and its Derivatives. ChemistrySelect, 2016, 1, 1384-1392.	1.5	11
66	A novel strategy for amplified probing versatile biomolecules through a photoswitchable biocatalytic cascade. Sensors and Actuators B: Chemical, 2018, 262, 110-117.	7.8	11
67	Highly Dispersed and Smallâ€Sized Nickel(II) Hydroxide Coâ€Catalyst Prepared by Photodeposition for Hydrogen Production. Chemistry - an Asian Journal, 2019, 14, 4193-4200.	3.3	11
68	Efficiently selective oxidation of glycerol by Bi _{QDs} /BiOBr–O _v : promotion of molecular oxygen activation by Bi quantum dots and oxygen vacancies. New Journal of Chemistry, 2021, 45, 12938-12944.	2.8	11
69	Invoking Cathodic Photoelectrochemistry through a Spontaneously Coordinated Electron Transporter: A Proof of Concept Toward Signal Transduction for Bioanalysis. Analytical Chemistry, 2021, 93, 17119-17126.	6.5	11
70	Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s. Chemical Communications, 2021, 57, 3676-3679.	4.1	10
71	Effects of morphology and crystal phase of sulfated nano-titania solid acids on catalytic esterification. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 445-458.	1.7	9
72	Immobilization-free, split-mode cathodic photoelectrochemical strategy combined with cascaded amplification for versatile biosensing. Biosensors and Bioelectronics, 2019, 142, 111572.	10.1	9

#	Article	IF	CITATIONS
73	Lithium Doping Y2O3: A Highly Efficient Solid Base Catalyst for Biodiesel Synthesis with Excellent Water Resistance and Acid Resistance. Catalysis Letters, 2019, 149, 2433-2443.	2.6	9
74	Rare earthâ€doped calciumâ€based magnetic catalysts for transesterification of glycerol to glycerol carbonate. Journal of the Chinese Chemical Society, 2019, 66, 164-170.	1.4	9
75	Methylene blue embedded duplex DNA as an efficient signal stimulator of petal-like BiVO4 for ultrasensitive photoelectrochemical bioassay. Analytica Chimica Acta, 2021, 1182, 338945.	5.4	9
76	Magnetic Solid Base Catalyst Fe ₃ O ₄ @Gly Used as Acidâ€Resistant Catalyst for Biodiesel Production. Journal of the Chinese Chemical Society, 2018, 65, 681-686.	1.4	8
77	Smart nanozyme of silver hexacyanoferrate with versatile bio-regulated activities for probing different targets. Talanta, 2021, 228, 122268.	5.5	8
78	Efficient photothermal degradation on Bi12CoO2O sillenite with a strong internal electric field induced by the thermal effect. Applied Catalysis B: Environmental, 2022, 313, 121452.	20.2	8
79	Bi2WO6 nanosheets assembled BN quantum dots: Enhanced charge separation and photocatalytic antibiotics degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128208.	4.7	7
80	A Facile Hydrothermal Method to Synthesize Nanosized Co3O4/CeO2 and Study of its Catalytic Characteristic in Catalytic Ozonation of Phenol. Catalysis Letters, 2009, 133, 209-213.	2.6	6
81	High-throughput photoelectrochemical determination of E. coli O157:H7 by modulation of the anodic photoelectrochemistry of CdS quantum dots via reversible deposition of MnO2. Mikrochimica Acta, 2020, 187, 16.	5.0	5
82	Photo-sensitization of BiOCl by CulnS2 Surface Layer for Photoelectrochemical Cathode. Catalysis Letters, 2020, 150, 1337-1345.	2.6	5
83	MOF-5-derived ZnO–C nanoparticles combined with <i>α</i> hronoxsub>2 for the efficient degradation of tetracycline under visible light. New Journal of Chemistry, 2022, 46, 7346-7354.	2.8	5
84	In situ chemical redox and functionalization of graphene oxide: toward new cathodic photoelectrochemical bioanalysis. Chemical Communications, 2019, 55, 10072-10075.	4.1	4
85	NiO nanowires as hole-transfer layer for drastic enhancement of CdSe-sensitized photocathodes. New Journal of Chemistry, 2019, 43, 4075-4081.	2.8	4
86	p-Type Cu ₂ O as an effective interlayer between CdS and NiO _x cocatalysts to promote photocatalytic hydrogen production. New Journal of Chemistry, 2020, 44, 17719-17723.	2.8	4
87	Facile synthesis of a highly efficient Co/Cu@NC catalyst for base-free oxidation of alcohols to esters. New Journal of Chemistry, 2020, 44, 7780-7785.	2.8	4
88	ITO nanoparticle film as a hole-selective layer for PbS-sensitized photocathodes. New Journal of Chemistry, 2018, 42, 2243-2247.	2.8	3
89	Surface polarization of BiOI to boost photoelectrochemical signal transduction for high-performance bioassays. Chemical Communications, 2022, 58, 4651-4654.	4.1	3
90	AgBi(WO ₄) ₂ : A New Modification Material to Bi ₂ WO ₆ for Enhanced and Stable Visibleâ€Light Photocatalyic Performance. Chemistry - an Asian Journal, 2015, 10, 1948-1952.	3.3	2

YUMING DONG

#	Article	IF	CITATION
91	Surface Modification of KF Immobilized on Spherical Magnetite Nanoparticle with CTAB for Glycerol Carbonate Production. ChemistrySelect, 2019, 4, 1214-1219.	1.5	2
92	Coupling p-Hydroxybenzoate Hydroaxylase with the Photoresponsive Nanozyme for Universal Dehydrogenase-Based Bioassays. Sensors and Actuators B: Chemical, 2021, 327, 128859.	7.8	2
93	Ni _{<i>x</i>} P and Mn ₃ O ₄ dual co-catalysts separately deposited on a g-C ₃ N ₄ /red phosphorus hybrid photocatalyst for an efficient hydrogen evolution. New Journal of Chemistry, 2022, 46, 6267-6273.	2.8	2
94	Synthesis of Bismuth(III)Neodecanoate and Its Application to Poly(Vinyl Chloride) as a Thermal Stabilizer. Polymer-Plastics Technology and Engineering, 2018, 57, 1657-1664.	1.9	1
95	The Application of the Transient Optical Switch Based on Gradient Organic Heterojunctions. Plasmonics, 2019, 14, 1405-1410.	3.4	O