
Christa Brosseau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3831074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ad-hoc Surface-Enhanced Raman Spectroscopy Methodologies for the Detection of Artist Dyestuffs: Thin Layer Chromatography-Surface Enhanced Raman Spectroscopy and in Situ On the Fiber Analysis. Analytical Chemistry, 2009, 81, 3056-3062.	6.5	156
2	Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas. Physical Chemistry Chemical Physics, 2009, 11, 7350.	2.8	137
3	Surface-Enhanced Raman Spectroscopy: A Direct Method to Identify Colorants in Various Artist Media. Analytical Chemistry, 2009, 81, 7443-7447.	6.5	112
4	Quantitative Detection of Uric Acid by Electrochemical-Surface Enhanced Raman Spectroscopy Using a Multilayered Au/Ag Substrate. Analytical Chemistry, 2015, 87, 441-447.	6.5	88
5	AFM Studies of Solid-Supported Lipid Bilayers Formed at a Au(111) Electrode Surface Using Vesicle Fusion and a Combination of Langmuirâ^'Blodgett and Langmuirâ^'Schaefer Techniques. Langmuir, 2008, 24, 10313-10323.	3.5	76
6	Revealing the invisible: using surfaceâ€enhanced Raman spectroscopy to identify minute remnants of color in Winslow Homer's colorless skies. Journal of Raman Spectroscopy, 2011, 42, 1305-1310.	2.5	75
7	Portable Electrochemical Surface-Enhanced Raman Spectroscopy System for Routine Spectroelectrochemical Analysis. Analytical Chemistry, 2012, 84, 1760-1764.	6.5	74
8	Development of a SERS-Based Rapid Vertical Flow Assay for Point-of-Care Diagnostics. Analytical Chemistry, 2017, 89, 1405-1410.	6.5	74
9	Layer-by-Layer PMIRRAS Characterization of DMPC Bilayers Deposited on a Au(111) Electrode Surface. Langmuir, 2006, 22, 10365-10371.	3.5	73
10	Electrochemical-surface enhanced Raman spectroscopy (E-SERS) of uric acid: a potential rapid diagnostic method for early preeclampsia detection. Physical Chemistry Chemical Physics, 2013, 15, 1382-1388.	2.8	61
11	Development of an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) aptasensor for direct detection of DNA hybridization. Physical Chemistry Chemical Physics, 2015, 17, 21356-21363.	2.8	55
12	Electrochemical-Surface Enhanced Raman Spectroscopic (EC-SERS) Study of 6-Thiouric Acid: A Metabolite of the Chemotherapy Drug Azathioprine. Journal of Physical Chemistry C, 2017, 121, 8084-8090.	3.1	53
13	Electrochemical and PM-IRRAS a Glycolipid-Containing Biomimetic Membrane Prepared Using Langmuirâ^'Blodgett/Langmuirâ^'Schaefer Deposition. Langmuir, 2008, 24, 13058-13067.	3.5	52
14	Electrochemical Surface-Enhanced Raman Spectroscopy as a Platform for Bacterial Detection and Identification. Analytical Chemistry, 2018, 90, 12639-12646.	6.5	52
15	Development of an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) fabric-based plasmonic sensor for point-of-care diagnostics. Analyst, The, 2018, 143, 4128-4135.	3.5	52
16	A Simple Complex on the Verge of Breakdown: Isolation of the Elusive Cyanoformate Ion. Science, 2014, 344, 75-78.	12.6	49
17	AFM Studies of the Effect of Temperature and Electric Field on the Structure of a DMPCâ^'Cholesterol Bilayer Supported on a Au(111) Electrode Surface. Langmuir, 2009, 25, 1028-1037.	3.5	44
18	Electrochemical and PM-IRRAS Characterization of Cholera Toxin Binding at a Model Biological Membrane. Langmuir, 2013, 29, 965-976.	3.5	39

CHRISTA BROSSEAU

#	Article	IF	CITATIONS
19	The development of "fab-chips―as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications. Analyst, The, 2015, 140, 779-785.	3.5	38
20	Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) study of the interaction between protein aggregates and biomimetic membranes. Physical Chemistry Chemical Physics, 2018, 20, 4513-4526.	2.8	30
21	Adsorption ofN-Decyl-N,N,N-trimethylammonium Triflate (DeTATf), a Cationic Surfactant, on the Au(111) Electrode Surface. Langmuir, 2007, 23, 1784-1791.	3.5	27
22	Electrochemical SERS study of a biomimetic membrane supported at a nanocavity patterned Ag electrode. Electrochimica Acta, 2013, 110, 120-132.	5.2	27
23	Spectroelectrochemical and computational studies of tetrahydrocannabinol (THC) and carboxy-tetrahydrocannabinol (THC-COOH). Analyst, The, 2020, 145, 1849-1857.	3.5	25
24	In Situ STM Study of Potential-Driven Transitions in the Film of a Cationic Surfactant Adsorbed on a Au(111) Electrode Surface. Langmuir, 2007, 23, 12529-12534.	3.5	24
25	Electrochemical surface-enhanced Raman spectroscopy (E-SERS) of novel biodegradable ionic liquids. Physical Chemistry Chemical Physics, 2013, 15, 19205.	2.8	23
26	Surface-enhanced Raman spectroscopy analysis of house paint and wallpaper samples from an 18th century historic property. Analyst, The, 2011, 136, 3453.	3.5	20
27	Silver-chitosan and gold-chitosan substrates for surface-enhanced Raman spectroscopy (SERS): Effect of nanoparticle morphology on SERS performance. Materials Chemistry and Physics, 2021, 260, 124107.	4.0	20
28	Development of a sustainable plasmon-enhanced spectroelectrochemical sensor using avocado pit (Persea americana) extract. Sensors and Actuators B: Chemical, 2018, 257, 270-277.	7.8	17
29	Evaluation of an Electrodeposited Bimetallic Cu/Ag Nanostructured Screen Printed Electrode for Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Investigations. Journal of the Electrochemical Society, 2017, 164, B3091-B3095.	2.9	15
30	Optimization of gold nanorod arrays for surface enhanced Raman spectroscopy (SERS) detection of atrazine. Analyst, The, 2021, 146, 2037-2047.	3.5	13
31	SERS of <i>β</i> â€Thioglucose Adsorbed on Nanostructured Silver Electrodes. ChemPhysChem, 2010, 11, 1460-1467.	2.1	12
32	Electrochemical surface-enhanced Raman spectroscopy (EC-SERS): a tool for the identification of polyphenolic components in natural lake pigments. Physical Chemistry Chemical Physics, 2021, 24, 347-356.	2.8	12
33	Electrochemical quartz crystal nanobalance and chronocoulometry studies of phenylalanine adsorption on Au. Electrochimica Acta, 2006, 51, 2145-2152.	5.2	10
34	Electrochemical quartz crystal nanobalance (EQCN) studies of the adsorption behaviour of an enzyme, mandelate racemase, and its substrate, mandelic acid, on Pt. Electrochimica Acta, 2005, 50, 1289-1297.	5.2	9
35	On the origin of electrochemical surface-enhanced Raman spectroscopy (EC-SERS) signals for bacterial samples: the importance of filtered control studies in the development of new bacterial screening platforms. Analytical Methods, 2019, 11, 924-929.	2.7	9
36	Fabrication of high quality electrochemical SERS (EC-SERS) substrates using physical vapour deposition. Physical Chemistry Chemical Physics, 2021, 23, 20065-20072.	2.8	9

#	Article	IF	CITATIONS
37	Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) and Computational Study of Atrazine: Toward Point-of-Need Detection of Prevalent Herbicides. Journal of Physical Chemistry C, 2022, 126, 9836-9842.	3.1	9
38	Characterizing Changes In The Structure And Orientation Of Supported Model Membranes Upon Binding Of Cholera Toxin B. Biophysical Journal, 2009, 96, 549a.	0.5	0
39	Editorial: Novel SERS-Active Materials and Substrates: Sensing and (Bio)applications. Frontiers in Chemistry, 2021, 9, 784735.	3.6	0