Lucas Ferrari Gerez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3830929/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Hybrid, Soft Robotic Exoskeleton Glove with Inflatable, Telescopic Structures and a Shared Control Operation Scheme. , 2022, , .		0
2	Leveraging Human Perception in Robot Grasping and Manipulation Through Crowdsourcing and Gamification. Frontiers in Robotics and Al, 2021, 8, 652760.	3.2	0
3	A Pneumatically Driven, Disposable, Soft Robotic Gripper Equipped With Multi-Stage, Retractable, Telescopic Fingers. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 573-582.	3.2	10
4	Improving Robotic Manipulation Without Sacrificing Grasping Efficiency: A Multi-Modal, Adaptive Gripper With Reconfigurable Finger Bases. IEEE Access, 2021, 9, 83298-83308.	4.2	14
5	On Differential Mechanisms for Underactuated, Lightweight, Adaptive Prosthetic Hands. Frontiers in Neurorobotics, 2021, 15, 702031.	2.8	4
6	A Multi-Modal Robotic Gripper with a Reconfigurable Base: Improving Dexterous Manipulation without Compromising Grasping Efficiency. , 2021, , .		2
7	A Hybrid, Soft Exoskeleton Glove Equipped with a Telescopic Extra Thumb and Abduction Capabilities. , 2020, , .		22
8	A Hybrid, Wearable Exoskeleton Glove Equipped With Variable Stiffness Joints, Abduction Capabilities, and a Telescopic Thumb. IEEE Access, 2020, 8, 173345-173358.	4.2	24
9	A Pneumatically Driven, Disposable, Soft Robotic Gripper Equipped with Retractable, Telescopic Fingers. , 2020, , .		3
10	Employing Pneumatic, Telescopic Actuators for the Development of Soft and Hybrid Robotic Grippers. Frontiers in Robotics and AI, 2020, 7, 601274.	3.2	6
11	A Tendon-Driven, Preloaded, Pneumatically Actuated, Soft Robotic Gripper with a Telescopic Palm. , 2020, , .		14
12	A Hybrid, Encompassing, Three-Fingered Robotic Gripper Combining Pneumatic Telescopic Mechanisms and Rigid Claws. , 2020, , .		4
13	Model-Free, Vision-Based Object Identification and Contact Force Estimation with a Hyper-Adaptive Robotic Gripper. , 2020, , .		0
14	A Soft Exoglove Equipped With a Wearable Muscle-Machine Interface Based on Forcemyography and Electromyography. IEEE Robotics and Automation Letters, 2019, 4, 3240-3246.	5.1	32
15	On Alternative Uses of Structural Compliance for the Development of Adaptive Robot Grippers and Hands. Frontiers in Neurorobotics, 2019, 13, 91.	2.8	20
16	Employing Magnets to Improve the Force Exertion Capabilities of Adaptive Robot Hands in Precision Grasps. , 2019, , .		7
17	Employing IMU and ArUco Marker Based Tracking to Decode the Contact Forces Exerted by Adaptive Hands. , 2019, , .		3
18	Unconventional Uses of Structural Compliance in Adaptive Hands. , 2019, , .		1

Unconventional Uses of Structural Compliance in Adaptive Hands. , 2019, , . 18

2

#	Article	IF	CITATIONS
19	Adaptive, Tendon-Driven, Affordable Prostheses for Partial Hand Amputations: On Body-Powered and Motor Driven Implementations. , 2019, 2019, 6656-6660.		2
20	An Underactuated, Tendon-Driven, Wearable Exo-Glove With a Four-Output Differential Mechanism. , 2019, 2019, 6224-6228.		7
21	On the Development of Adaptive, Tendon-Driven, Wearable Exo-Gloves for Grasping Capabilities Enhancement. IEEE Robotics and Automation Letters, 2019, 4, 422-429.	5.1	49
22	A Compact Ratchet Clutch Mechanism for Fine Tendon Termination and Adjustment. , 2018, , .		7
23	Development of a wrist-hand orthosis for children with neurological and motor disabilities: conceptual design and mock-up. , 2017, , .		0