Michael J Gandal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/383011/publications.pdf Version: 2024-02-01

MICHAEL CANDAL

#	Article	IF	CITATIONS
1	Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 2019, 51, 63-75.	9.4	1,594
2	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	13.7	929
3	Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science, 2018, 359, 693-697.	6.0	851
4	Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, 362, .	6.0	805
5	Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 2019, 177, 1600-1618.e17.	13.5	701
6	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	9.4	629
7	Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .	6.0	618
8	Genome-wide changes in IncRNA, splicing, and regional gene expression patterns in autism. Nature, 2016, 540, 423-427.	13.7	603
9	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	6.0	516
10	Chromosome conformation elucidates regulatory relationships in developing human brain. Nature, 2016, 538, 523-527.	13.7	507
11	Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nature Reviews Genetics, 2015, 16, 441-458.	7.7	378
12	Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks. Cell, 2019, 178, 850-866.e26.	13.5	326
13	Deletion of vanilloid receptor 1_expressing primary afferent neurons for pain control. Journal of Clinical Investigation, 2004, 113, 1344-1352.	3.9	297
14	Validating Î ³ Oscillations and Delayed Auditory Responses as Translational Biomarkers of Autism. Biological Psychiatry, 2010, 68, 1100-1106.	0.7	275
15	Gamma synchrony: Towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology, 2012, 62, 1504-1518.	2.0	244
16	MEG detection of delayed auditory evoked responses in autism spectrum disorders: towards an imaging biomarker for autism. Autism Research, 2010, 3, 8-18.	2.1	230
17	Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science, 2018, 362, .	6.0	220
18	The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nature Genetics, 2017, 49, 1167-1173.	9.4	200

MICHAEL J GANDAL

#	Article	IF	CITATIONS
19	Ketamine Modulates Theta and Gamma Oscillations. Journal of Cognitive Neuroscience, 2010, 22, 1452-1464.	1.1	191
20	The road to precision psychiatry: translating genetics into disease mechanisms. Nature Neuroscience, 2016, 19, 1397-1407.	7.1	189
21	Genetic Control of Expression and Splicing in Developing Human Brain Informs Disease Mechanisms. Cell, 2019, 179, 750-771.e22.	13.5	174
22	A genome-wide association study of shared risk across psychiatric disorders implicates gene regulation during fetal neurodevelopment. Nature Neuroscience, 2019, 22, 353-361.	7.1	173
23	GABAB-mediated rescue of altered excitatory–inhibitory balance, gamma synchrony and behavioral deficits following constitutive NMDAR-hypofunction. Translational Psychiatry, 2012, 2, e142-e142.	2.4	172
24	N-methyl-d-aspartic acid receptor antagonist–induced frequency oscillations in mice recreate pattern of electrophysiological deficits in schizophrenia. Neuroscience, 2009, 158, 705-712.	1.1	161
25	Mouse behavioral endophenotypes for schizophrenia. Brain Research Bulletin, 2010, 83, 147-161.	1.4	150
26	mGluR5-Antagonist Mediated Reversal of Elevated Stereotyped, Repetitive Behaviors in the VPA Model of Autism. PLoS ONE, 2011, 6, e26077.	1.1	146
27	Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. Biological Psychiatry, 2022, 91, 313-327.	0.7	114
28	Identification of neural oscillations and epileptiform changes in human brain organoids. Nature Neuroscience, 2021, 24, 1488-1500.	7.1	112
29	Mice with reduced NMDA receptor expression: more consistent with autism than schizophrenia?. Genes, Brain and Behavior, 2012, 11, 740-750.	1.1	105
30	Dysbindin-1 mutant mice implicate reduced fast-phasic inhibition as a final common disease mechanism in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E962-70.	3.3	98
31	Parvalbumin Cell Ablation of NMDA-R1 Causes Increased Resting Network Excitability with Associated Social and Self-Care Deficits. Neuropsychopharmacology, 2014, 39, 1603-1613.	2.8	96
32	Pyramidal Cell Selective Ablation of N-Methyl-D-Aspartate Receptor 1 Causes Increase in Cellular and Network Excitability. Biological Psychiatry, 2015, 77, 556-568.	0.7	89
33	In Vitro–In Vivo Correlations of Scalable PLGA-Risperidone Implants for the Treatment of Schizophrenia. Pharmaceutical Research, 2010, 27, 1730-1737.	1.7	82
34	Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing. Cell Reports, 2021, 37, 110022.	2.9	79
35	NMDA antagonists recreate signal-to-noise ratio and timing perturbations present in schizophrenia. Neurobiology of Disease, 2012, 46, 93-100.	2.1	76
36	A novel electrophysiological model of chemotherapy-induced cognitive impairments in mice. Neuroscience, 2008, 157, 95-104.	1.1	67

MICHAEL J GANDAL

#	Article	IF	CITATIONS
37	Cannabis-induced psychosis associated with high potency "wax dabs― Schizophrenia Research, 2016, 172, 211-212.	1.1	67
38	Measuring the Maturity of the Fast-Spiking Interneuron Transcriptional Program in Autism, Schizophrenia, and Bipolar Disorder. PLoS ONE, 2012, 7, e41215.	1.1	64
39	Quantum computing at the frontiers of biological sciences. Nature Methods, 2021, 18, 701-709.	9.0	64
40	Integrative genomics identifies a convergent molecular subtype that links epigenomic with transcriptomic differences in autism. Nature Communications, 2020, 11, 4873.	5.8	62
41	MeCP2+/â^' mouse model of RTT reproduces auditory phenotypes associated with Rett syndrome and replicate select EEG endophenotypes of autism spectrum disorder. Neurobiology of Disease, 2012, 46, 88-92.	2.1	56
42	A Robust Method Uncovers Significant Context-Specific Heritability in Diverse Complex Traits. American Journal of Human Genetics, 2020, 106, 71-91.	2.6	54
43	Strong correlation of downregulated genes related to synaptic transmission and mitochondria in post-mortem autism cerebral cortex. Journal of Neurodevelopmental Disorders, 2018, 10, 18.	1.5	51
44	Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders. Nature Communications, 2021, 12, 3968.	5.8	48
45	Synaptic and Gene Regulatory Mechanisms in Schizophrenia, Autism, and 22q11.2 Copy Number Variant–Mediated Risk for Neuropsychiatric Disorders. Biological Psychiatry, 2020, 87, 150-163.	0.7	46
46	Brain gene co-expression networks link complement signaling with convergent synaptic pathology in schizophrenia. Nature Neuroscience, 2021, 24, 799-809.	7.1	44
47	Transcriptomic Insight Into the Polygenic Mechanisms Underlying Psychiatric Disorders. Biological Psychiatry, 2021, 89, 54-64.	0.7	36
48	NMDA antagonist MK801 recreates auditory electrophysiology disruption present in autism and other neurodevelopmental disorders. Behavioural Brain Research, 2012, 234, 233-237.	1.2	32
49	Convergence of circuit dysfunction in ASD: a common bridge between diverse genetic and environmental risk factors and common clinical electrophysiology. Frontiers in Cellular Neuroscience, 2014, 8, 414.	1.8	31
50	Maternal Immune Activation during Pregnancy Alters Postnatal Brain Growth and Cognitive Development in Nonhuman Primate Offspring. Journal of Neuroscience, 2021, 41, 9971-9987.	1.7	29
51	Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage. Nature Neuroscience, 2019, 22, 1521-1532.	7.1	28
52	Integrative network analysis reveals biological pathways associated with Williams syndrome. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2019, 60, 585-598.	3.1	24
53	Human Astrocytes Exhibit Tumor Microenvironment-, Age-, and Sex-Related Transcriptomic Signatures. Journal of Neuroscience, 2022, 42, 1587-1603.	1.7	24
54	Mechanisms of Neuronal Alternative Splicing and Strategies for Therapeutic Interventions. Journal of Neuroscience, 2019, 39, 8193-8199.	1.7	22

MICHAEL J GANDAL

#	Article	IF	CITATIONS
55	Alterations in Retrotransposition, Synaptic Connectivity, and Myelination Implicated by Transcriptomic Changes Following Maternal Immune Activation in Nonhuman Primates. Biological Psychiatry, 2021, 89, 896-910.	0.7	21
56	Shared Molecular Neuropathology Across Major Psychiatric Disorders Parallels Polygenic Overlap. Focus (American Psychiatric Publishing), 2019, 17, 66-72.	0.4	20
57	Spatial fine-mapping for gene-by-environment effects identifies risk hot spots for schizophrenia. Nature Communications, 2018, 9, 5296.	5.8	17
58	Postnatal immune activation causes social deficits in a mouse model of tuberous sclerosis: Role of microglia and clinical implications. Science Advances, 2021, 7, eabf2073.	4.7	12
59	Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder. Nature Communications, 2022, 13, .	5.8	12
60	Nicotine normalizes event related potentials in COMT-Val-tg mice and increases gamma and theta spectral density Behavioral Neuroscience, 2012, 126, 332-343.	0.6	9
61	Polygenicity in Psychiatry—Like It or Not, We Have to Understand It. Biological Psychiatry, 2021, 89, 2-4.	0.7	9
62	Associations between patterns in comorbid diagnostic trajectories of individuals with schizophrenia and etiological factors. Nature Communications, 2021, 12, 6617.	5.8	9
63	Leveraging eQTLs to identify individual-level tissue of interest for a complex trait. PLoS Computational Biology, 2021, 17, e1008915.	1.5	3
64	The Genetics-Driven Revival in Neuropsychiatric Drug Development. Biological Psychiatry, 2016, 79, 628-630.	0.7	2
65	Decoupling Sleep and Brain Size in Childhood: An Investigation of Genetic Covariation in the Adolescent Brain Cognitive Development Study. Biological Psychiatry Global Open Science, 2023, 3, 139-148.	1.0	2
66	238. Transcriptome-Wide Isoform-Level Dysregulation in Schizophrenia, Autism, and Bipolar Disorder. Biological Psychiatry, 2019, 85, S98-S99.	0.7	1
67	Banking on Polygenicity to Disentangle Psychiatric Comorbidity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 577-578.	1.1	0
68	RNA-SEQUENCING FOR MECHANISTIC DISSECTION OF COMPLEX PSYCHIATRIC TRAITS. European Neuropsychopharmacology, 2019, 29, S4.	0.3	0
69	Psychopharmacology of Autism Spectrum Disorder. , 2016, , 275-300.		0