Emmanouel Koudoumas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3830064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Investigations in Electrochromic Vanadium Pentoxide Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100431.	1.8	7
2	Novel Water-Based Paints for Composite Materials Used in Electromagnetic Shielding Applications. Nanomaterials, 2022, 12, 487.	4.1	10
3	3D Printed Metal Oxide-Polymer Composite Materials for Antifouling Applications. Nanomaterials, 2022, 12, 917.	4.1	3
4	Silicon Nanosheets: An Emerging 2D Photonic Material with a Large Transient Nonlinear Optical Response beyond Graphene. Nanomaterials, 2022, 12, 90.	4.1	6
5	WO3 Films Grown by Spray Pyrolysis for Smart Windows Applications. Coatings, 2022, 12, 545.	2.6	6
6	Electromagnetic Shielding of Composite Films Based on Graphite, Graphitized Carbon Black and Iron-Oxide. Coatings, 2022, 12, 665.	2.6	7
7	Carbon Allotropes-Based Paints and Their Composite Coatings for Electromagnetic Shielding Applications. Nanomaterials, 2022, 12, 1839.	4.1	6
8	Electrochromic response and porous structure of WO3 cathode layers. Electrochimica Acta, 2021, 376, 138049.	5.2	32
9	Influence of Mg doping on the ultrafast electron dynamics of VO2 films. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	2
10	Innovative Ag–TiO2 Nanofibers with Excellent Photocatalytic and Antibacterial Actions. Catalysts, 2021, 11, 1234.	3.5	18
11	PLA nanocomposites with antimicrobial action, based on olive fruit polyphenols and citrus fruit extracts encapsulated in Maltodextrin. , 2021, , .		0
12	Towards High Performance Chemical Vapour Deposition V2O5 Cathodes for Batteries Employing Aqueous Media. Molecules, 2020, 25, 5558.	3.8	9
13	Annealing Effect on the Properties of Electrochromic V2O5 Thin Films Grown by Spray Deposition Technique. Nanomaterials, 2020, 10, 2397.	4.1	12
14	Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus. Energies, 2020, 13, 6111.	3.1	6
15	The Mechanical and Physical Properties of 3D-Printed Materials Composed of ABS-ZnO Nanocomposites and ABS-ZnO Microcomposites. Micromachines, 2020, 11, 615.	2.9	46
16	Mechanical Properties of 3D-Printed Acrylonitrile–Butadiene–Styrene TiO2 and ATO Nanocomposites. Polymers, 2020, 12, 1589.	4.5	46
17	AFM studies on surface morphology evolution after annealing of V2O5 thin films grown by spray pyrolysis. , 2020, , .		0
18	Effect of Graphene Nanoplatelets on the Structure, the Morphology, and the Dielectric Behavior of Low-Density Polyethylene Nanocomposites. Materials, 2020, 13, 4776.	2.9	13

#	Article	IF	CITATIONS
19	Sustainable Additive Manufacturing: Mechanical Response of Acrylonitrile-Butadiene-Styrene over Multiple Recycling Processes. Sustainability, 2020, 12, 3568.	3.2	74
20	Mechanical and Electrical Properties Investigation of 3D-Printed Acrylonitrile–Butadiene–Styrene Graphene and Carbon Nanocomposites. Journal of Materials Engineering and Performance, 2020, 29, 1909-1918.	2.5	63
21	Assessing the type and quality of high voltage composite outdoor insulators by remote laser-induced breakdown spectroscopy analysis: A feasibility study. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 165, 105768.	2.9	12
22	Tuning electrical properties of polythiophene/nickel nanocomposites via fabrication. Materials and Design, 2019, 182, 108027.	7.0	12
23	Tungsten doping effect on V2O5 thin film electrochromic performance. Electrochimica Acta, 2019, 321, 134743.	5.2	47
24	Graphene-based materials and their biomedical and environmental applications: Recent advances. , 2019, , 243-257.		1
25	Nanostructured ZnO-based materials for biomedical and environmental applications. , 2019, , 285-305.		1
26	Novel Spark Method for Deposition of Metal Oxide Thin Films: Deposition of Hexagonal Tungsten Oxide (Phys. Status Solidi A 7â^•2019). Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1970028.	1.8	2
27	Effect of Zinc Oxide concentration on the dielectric properties of 3D Printed Acrylonitrile Butadiene Styrene nanocomposites. , 2019, , .		3
28	A comprehensive investigation of the mechanical behavior and the dielectrics of pure polylactic acid (PLA) and PLA with graphene (GnP) in fused deposition modeling (FDM). International Journal of Plastics Technology, 2019, 23, 195-206.	3.1	52
29	Novel Spark Method for Deposition of Metal Oxide Thin Films: Deposition of Hexagonal Tungsten Oxide. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800513.	1.8	4
30	Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Applied Surface Science, 2018, 448, 481-488.	6.1	130
31	Zinc oxide-graphene based composite layers for electromagnetic interference shielding in the GHz frequency range. Thin Solid Films, 2018, 651, 152-157.	1.8	17
32	Comparative Study of Sm and La Doped ZnO Properties. , 2018, , .		0
33	Effect of deposition temperature on the electrochromic properties of WO3 grown by LPCVD. Advanced Materials Letters, 2018, 9, 192-198.	0.6	5
34	The effect of growth time and oxygen flow on the properties of electrochromic WO3 thin layers grown by LPCVDÂ. Advanced Materials Letters, 2018, 9, 578-584.	0.6	7
35	Oxygen and temperature effects on the electrochemical and electrochromic properties of rf-sputtered V2O5 thin films. Electrochimica Acta, 2017, 232, 54-63.	5.2	40
36	Cationic Effect on the Electrochemical Characteristics of the Hydrothermally Grown Manganese Dioxide. Journal of Electronic Materials, 2017, 46, 2232-2240.	2.2	14

#	Article	IF	CITATIONS
37	A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers. Applied Surface Science, 2017, 398, 15-18.	6.1	49
38	Tunable Properties of Mg-Doped V ₂ O ₅ Thin Films for Energy Applications: Li-Ion Batteries and Electrochromics. Journal of Physical Chemistry C, 2017, 121, 70-79.	3.1	82
39	Ternary organic solar cells incorporating zinc phthalocyanine with improved performance exceeding 8.5%. Dyes and Pigments, 2017, 146, 408-413.	3.7	23
40	Insulators' pollution problem: Experience from the coastal transmission system of Crete. , 2017, , .		4
41	Atmospheric Pressure Chemical Vapor Deposition of Vanadium Oxides at 300 °C for Li-Ion Batteries. Materials Focus, 2017, 6, 314-318.	0.4	Ο
42	Oxygen source-Oriented Control of APCVD VO2 for Capacitive Applications. Journal of Electrochemical Science and Engineering, 2016, , .	3.5	3
43	Study of thermochromic VO <inf>2</inf> material as thermal switch for power lines. , 2016, ,		1
44	Electrochemical Properties of APCVD αâ€Fe ₂ O ₃ Nanoparticles at 300 ^o C. ChemistrySelect, 2016, 1, 2228-2234.	1.5	2
45	Ultrafast Processes in Graphene Oxide during Femtosecond Laser Excitation. Journal of Physical Chemistry C, 2016, 120, 4104-4111.	3.1	17
46	Capacitive behavior of Ag doped V2O5 grown by aerosol assisted chemical vapour deposition. Electrochimica Acta, 2016, 196, 294-299.	5.2	41
47	Hydrothermal Growth of MnO2 at 95 oC as an Anode Material. International Journal of Thin Film Science and Technology, 2016, 5, 121-127.	0.6	9
48	Laboratory Investigation of the Hydrophobicity Transfer Mechanism on Composite Insulators Aged in Coastal Service. Engineering, Technology & Applied Science Research, 2016, 6, 1124-1129.	1.9	5
49	Atmospheric Pressure Chemical Vapor Deposition Of Amorphous Tungsten Doped Vanadium Dioxide ForÂsmart Window Applications Â. Advanced Materials Letters, 2016, 7, 192-196.	0.6	19
50	Electrochemical Performance of Vanadium Oxide Coatings Grown using Atmospheric Pressure CVD. Chemical Vapor Deposition, 2015, 21, 369-374.	1.3	14
51	Effect of O ₂ flow rate on the thermochromic performance of VO ₂ coatings grown by atmospheric pressure CVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 856-860.	0.8	9
52	Effect of O ₂ flow rate on the electrochromic response of WO ₃ grown by LPCVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1011-1015.	0.8	13
53	Electrochemical evaluation of vanadium pentoxide coatings grown by AACVD. Solar Energy Materials and Solar Cells, 2015, 143, 601-605.	6.2	11
54	Nanostructured composite layers for electromagnetic shielding in the GHz frequency range. Applied Surface Science, 2015, 352, 151-154.	6.1	14

#	Article	IF	CITATIONS
55	Low Pressure CVD of Electrochromic WO ₃ at 400°C. Journal of the Electrochemical Society, 2015, 162, H579-H582.	2.9	39
56	Effect of solution chemistry on the characteristics of hydrothermally grown WO3 for electroactive applications. Thin Solid Films, 2015, 594, 333-337.	1.8	13
57	One-pot synthesis of WO3 structures at 95°C using HCl. Journal of Sol-Gel Science and Technology, 2015, 73, 520-526.	2.4	22
58	Study of the pH effect on the properties of the hydrothermally grown V2O5. Thin Solid Films, 2015, 594, 338-342.	1.8	4
59	Hydrophobicity transfer mechanism evaluation of field aged composite insulators. , 2015, , .		2
60	ÂAmorphous Thermochromic VO2 Coatings Grown By APCVD At Low Temperatures. Advanced Materials Letters, 2015, 6, 660-663.	0.6	9
61	Broadband near infrared optical power limiting of few layered graphene oxides. Applied Physics Letters, 2014, 104, 191112.	3.3	44
62	Electrochemical properties of opal-V6O13 composites. Journal of Alloys and Compounds, 2014, 586, 621-626.	5.5	14
63	Hydrothermally grown β-V2O5 electrode at 95°C. Journal of Colloid and Interface Science, 2014, 424, 1-6.	9.4	31
64	Photocatalytic properties of chemically grown vanadium oxide at 65°C. Thin Solid Films, 2014, 555, 169-172.	1.8	11
65	Influence of precursor type, deposition time and doping concentration on the morphological, electrical and optical properties of ZnO and ZnO:Al thin films grown by ultrasonic spray pyrolysis. Thin Solid Films, 2014, 555, 62-67.	1.8	33
66	Electrochemical properties of vanadium oxide coatings grown by hydrothermal synthesis on FTO substrates. New Journal of Chemistry, 2014, 38, 1959-1964.	2.8	37
67	Hydrothermal growth and characterization of shape-controlled NH ₄ V ₃ O ₈ . New Journal of Chemistry, 2014, 38, 2098-2104.	2.8	17
68	Thermochromic amorphous VO2 coatings grown by APCVD using a single-precursor. Solar Energy Materials and Solar Cells, 2014, 128, 36-40.	6.2	57
69	Electrodeposition Of V2O5 Using Ammonium Metavanadate At Room Room Temperature. Advanced Materials Letters, 2014, 5, 569-572.	0.6	9
70	Optical limiting action of few layered graphene oxide dispersed in different solvents. Optical Materials, 2013, 36, 112-117.	3.6	60
71	Electrochemical properties of vanadium oxide coatings grown by APCVD on glass substrates. Surface and Coatings Technology, 2013, 230, 186-189.	4.8	33
72	Electrochemical Activity of Electrodeposited V ₂ O ₅ Coatings. Journal of the Electrochemical Society, 2013, 160, D6-D9.	2.9	37

Emmanouel Koudoumas

#	Article	IF	CITATIONS
73	Effect of gold and silver nanoislands on the electrochemical properties of carbon nanofoam. Electrochimica Acta, 2013, 111, 305-313.	5.2	16
74	Thermochromic Vanadium Oxide Coatings Grown by APCVD at Low Temperatures. Physics Procedia, 2013, 46, 137-141.	1.2	31
75	Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement. Nanoscale, 2013, 5, 4144.	5.6	57
76	Precursor concentration effect on structure and morphology of ZnO for coatings on fabric substrates. Acta Chemica lasi, 2013, 21, 107-118.	0.1	4
77	Comparative study on field collected samples of aged silicon rubber composite coatings for high voltage insulators. Acta Chemica Iasi, 2013, 21, 93-106.	0.1	1
78	Effect of Deposition Current Density on Electrodeposited Vanadium Oxide Coatings. Journal of the Electrochemical Society, 2012, 159, E145-E147.	2.9	17
79	Organic Bulk Heterojunction Photovoltaic Devices Based on Polythiophene–Graphene Composites. ACS Applied Materials & Interfaces, 2012, 4, 4864-4870.	8.0	52
80	Electrochemical properties of amorphous WO3 coatings grown on polycarbonate by aerosol-assisted CVD. Electrochimica Acta, 2012, 65, 185-189.	5.2	34
81	Spin coated carbon nanotubes as the hole transport layer in organic photovoltaics. Solar Energy Materials and Solar Cells, 2012, 96, 298-301.	6.2	59
82	A study of the electrochemical performance of vanadium oxide thin films grown by atmospheric pressure chemical vapour deposition. Solar Energy Materials and Solar Cells, 2011, 95, 2842-2847.	6.2	75
83	Photoluminescence study of ZnO structures grown by aqueous chemical growth. Thin Solid Films, 2011, 520, 1353-1357.	1.8	18
84	Spin coated graphene films as the transparent electrode in organic photovoltaic devices. Thin Solid Films, 2011, 520, 1238-1241.	1.8	79
85	Plasmonic Organic Photovoltaic Devices on Transparent Carbon Nanotube Films. IEEE Transactions on Electron Devices, 2011, 58, 860-864.	3.0	28
86	Electrochemical and photocatalytic properties of WO ₃ coatings grown at low temperatures. Journal of Materials Chemistry, 2011, 21, 513-517.	6.7	64
87	Hydrothermal growth of V2O5 photoactive films at low temperatures. Materials Chemistry and Physics, 2010, 124, 319-322.	4.0	32
88	Modeling the photovoltaic potential of a site. Renewable Energy, 2010, 35, 1387-1390.	8.9	52
89	Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications. Physica B: Condensed Matter, 2010, 405, 4389-4392.	2.7	3
90	A Comparative Study of the Photoinduced Properties of TiO2/SiO2 and TiO2/ZnO/SiO2 Layers Prepared by Chemical Routes. ECS Transactions, 2009, 25, 73-80.	0.5	3

#	Article	IF	CITATIONS
91	Photoinduced hydrophilic and photocatalytic response of hydrothermally grown TiO2 nanostructured thin films. Solid State Sciences, 2009, 11, 1499-1502.	3.2	31
92	Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films. Thin Solid Films, 2009, 517, 4303-4306.	1.8	53
93	Growth of c-axis oriented ZnO nanowires from aqueous solution: The decisive role of a seed layer for controlling the wires' diameter. Journal of Crystal Growth, 2009, 311, 4799-4804.	1.5	76
94	Nonlinear optical response of titanium oxide nanostructured thin films. Thin Solid Films, 2009, 518, 1174-1176.	1.8	26
95	One pot direct hydrothermal growth of photoactive TiO2 films on glass. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 81-85.	3.9	27
96	Influence of solution chemistry on the properties of hydrothermally grown TiO2 for advanced applications. Catalysis Today, 2009, 144, 172-176.	4.4	28
97	Polymer-nanotube composite mats with improved field emission performance and stability. Physical Chemistry Chemical Physics, 2009, 11, 703-709.	2.8	12
98	Influence of solution concentration and temperature on the aqueous chemical growth of zinc oxide structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3348-3352.	0.8	4
99	CaS:Eu,Sm and CaS:Ce,Sm films grown by embedding active powder into an inert matrix. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 130-134.	3.5	12
100	Structural and morphological properties of thin ZnO films grown by pulsed laser deposition. Applied Surface Science, 2008, 254, 5475-5480.	6.1	17
101	Light-induced reversible hydrophilicity of ZnO structures grown by aqueous chemical growth. Applied Surface Science, 2008, 254, 5695-5699.	6.1	67
102	Carbon nanotube doping of P3HT : PCBM photovoltaic devices. Journal Physics D: Applied Physics, 2008, 41, 165110.	2.8	84
103	P3HT/PCBM/SWNTs photovoltaic devices. , 2008, , .		1
104	Effective mobility and photocurrent in carbon nanotube–polymer composite photovoltaic cells. Nanotechnology, 2007, 18, 435702.	2.6	68
105	Photoluminescence of ZnO nanostructures grown by the aqueous chemical growth technique. Superlattices and Microstructures, 2007, 42, 473-478.	3.1	49
106	pH effect on the morphology of ZnO nanostructures grown with aqueous chemical growth. Thin Solid Films, 2007, 515, 8764-8767.	1.8	90
107	Europium and samarium doped calcium sulfide thin films grown by PLD. Applied Surface Science, 2007, 253, 8169-8173.	6.1	13
108	Substrate temperature influence on the properties of nanostructured ZnO transparent ultrathin films grown by PLD. Applied Surface Science, 2007, 253, 8141-8145.	6.1	26

#	Article	IF	CITATIONS
109	Nonlinear optical response of silicon nanocrystals. Optical Materials, 2007, 30, 260-263.	3.6	13
110	The effect of growth time on the morphology of ZnO structures deposited on Si (100) by the aqueous chemical growth technique. Journal of Crystal Growth, 2007, 308, 105-109.	1.5	36
111	Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique. Sensors and Actuators B: Chemical, 2007, 124, 187-191.	7.8	49
112	Integration of carbon nanotubes as hole transport electrode in polymer/fullerene bulk heterojunction solar cells. Thin Solid Films, 2007, 515, 8598-8600.	1.8	57
113	Thickness influence on surface morphology and ozone sensing properties of nanostructured ZnO transparent thin films grown by PLD. Applied Surface Science, 2006, 252, 5351-5354.	6.1	65
114	Ultrafast third-order nonlinear optical response of C84, C84–D2 (IV) and C84–D2d (II). Chemical Physics Letters, 2006, 425, 110-113.	2.6	5
115	Bi-layer photovoltaic devices with PPQ as the electron acceptor layer. Solar Energy Materials and Solar Cells, 2006, 90, 1705-1714.	6.2	9
116	Carbon nanotube/PEDOT:PSS electrodes for organic photovoltaics. EPJ Applied Physics, 2006, 36, 257-259.	0.7	56
117	Post-fabrication annealing effects in polymer-nanotube photovoltaic cells. Journal Physics D: Applied Physics, 2006, 39, 1058-1062.	2.8	105
118	Adaptive control of ion beams produced by ultrafast laser ablation of silicon (Invited Paper). , 2005, , .		2
119	Temporal pulse manipulation and consequences for ultrafast laser processing of materials. Optical Engineering, 2005, 44, 051106.	1.0	11
120	Optimization of ultrafast laser generated low-energy ion beams from silicon targets. Applied Physics Letters, 2005, 87, 124105.	3.3	23
121	Adaptive optimization in ultrafast laser material processing (Plenary Paper). , 2004, , .		0
122	Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams. Thin Solid Films, 2004, 453-454, 372-376.	1.8	15
123	Nonlinear optical response of some isomerically pure higher fullerenes and their corresponding endohedral metallofullerene derivatives: C82–C2î½, Dy@C82 (I), Dy2@C82 (I), C92–C2 and Er2@C92 (IV). Chemical Physics Letters, 2004, 394, 14-18.	2.6	23
124	<title>Temporal pulse manipulation and adaptive optimization in ultrafast laser processing of materials</title> . , 2004, 5662, 593.		5
125	Stimulated emissions and quantum interference in potassium atomÂlaser interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 1943-1956.	1.5	14
126	Large Enhancement of the Nonlinear Optical Response of Reduced Fullerene Derivatives. Chemistry - A European Journal, 2003, 9, 1529-1534.	3.3	39

#	Article	IF	CITATIONS
127	An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques. Chemical Physics Letters, 2003, 369, 318-324.	2.6	124
128	Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon. Applied Physics Letters, 2003, 83, 1474-1476.	3.3	70
129	Wave mixing and quantum interference effect in potassium atoms. , 2003, 5131, 83.		0
130	Ultrafast nonlinear optical response of higher fullerenes. , 2003, , .		0
131	Temporal Pulse Shaping and Optimization in Ultrafast Laser Ablation of Materials. Materials Research Society Symposia Proceedings, 2003, 780, 511.	0.1	2
132	<title>Nonlinear optical response of silicon nanocomposites</title> ., 2002, 4762, 297.		2
133	Anisotropic Distributions of Ion Fragments Produced by Dissociative Ionization of Halogenated Ethylenes in Intense Laser Fields. Journal of Physical Chemistry A, 2002, 106, 2838-2843.	2.5	9
134	Laser Ablation Studies of Deposited Silver Colloids Active in SERS. Laser Chemistry, 2002, 20, 23-32.	0.5	4
135	Dissociative ionization of halogenated ethylenes in intense femtosecond laser pulses. Chemical Physics Letters, 2002, 353, 295-303.	2.6	15
136	Onion-like carbon and diamond nanoparticles for optical limiting. Chemical Physics Letters, 2002, 357, 336-340.	2.6	112
137	Optical limiting and nonlinear optical absorption properties of C60–polystyrene star polymer films: C60 concentration dependence. Journal of Materials Chemistry, 2002, 12, 2071-2076.	6.7	68
138	Transient and instantaneous third-order nonlinear optical response of C60and the higher fullerenes C70, C76and C84. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 4983-4996.	1.5	37
139	Substantial Non-linear Optical Response of New Polyads Based on Ru and Os Complexes of Modified Terpyridines. Journal of Physical Chemistry B, 2001, 105, 10797-10804.	2.6	40
140	Single-photon photolysis of C60,C70,C76, and C84 in solutions. Chemical Physics Letters, 2001, 335, 539-544.	2.6	21
141	Ultrafast nonlinear optical response of C60–polystyrene star polymers. Chemical Physics Letters, 2001, 335, 533-538.	2.6	31
142	Nonlinear absorption in silicon nanocrystals. Quantum Electronics, 2001, 31, 817-820.	1.0	13
143	Optical limiting behaviour of the water-soluble C60/Î ³ -cyclodextrin complex. Chemical Physics Letters, 2000, 318, 488-495.	2.6	20
144	The Role of the Oxygen Molecule in the Photolysis of Fullerenes. Fullerenes, Nanotubes, and Carbon Nanostructures, 2000, 8, 289-318.	0.6	9

#	Article	IF	CITATIONS
145	Near-Infrared Laser-Induced Decomposition of C60Dissolved in Toluene. Fullerenes, Nanotubes, and Carbon Nanostructures, 2000, 8, 319-336.	0.6	0
146	<title>Optical properties of metal-coated silicon nanocrystals</title> ., 2000, 4070, 465.		3
147	Characterization of Nonlinear Optical Materials for Photonic Applications. , 2000, , 143-154.		1
148	Multiphoton Ionization and Fragmentation of CS ₂ Under Intense Short Pulse Laser Radiation. Laser Chemistry, 1999, 18, 129-142.	0.5	2
149	Polarization effects on the ionization of molecules under picosecond and femtosecond laser excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, L439-L450.	1.5	22
150	Ionization and fragmentation of aromatic and single-bonded hydrocarbons with 50 fs laser pulses at 800 nm. Chemical Physics Letters, 1999, 308, 373-380.	2.6	61
151	Fullerene decomposition induced by near-infrared laser radiation studied by real-time turbidimetry. Chemical Physics Letters, 1999, 313, 431-436.	2.6	1
152	Third-Order Susceptibility of Li@C60. Advanced Materials, 1999, 11, 405-408.	21.0	27
153	Subpicosecond ionization and dissociation of benzene and cyclic alkanes at 800 and 400 nm. Chemical Physics Letters, 1998, 289, 303-310.	2.6	54
154	Optical nonlinearities of fullerenes and their implications in optoelectronics. , 1998, , .		1
155	Ionization and fragmentation of small molecules under psec and fsec laser excitation. , 1998, , .		1
156	Sub-picosecond resonant third-order nonlinear optical response of azobenzene-doped polymer film. Journal of Applied Physics, 1997, 81, 7073-7075.	2.5	24
157	High order nonlinear optical response of fullerene solutions in the nanosecond regime. Optics Communications, 1997, 138, 301-304.	2.1	18
158	Sub-picosecond studies of the third-order optical nonlinearities of - toluene solutions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 5033-5041.	1.5	52
159	<title>Experimental evidence of quasi-absorptionless type of resonant sum-mixing process</title> . , 1996, , .		1
160	Nonlinear Optical Properties of Fullerenes. , 1996, , .		0
161	High-order nonlinear optical response of -toluene solutions in the sub-picosecond regime. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, L773-L778.	1.5	11
162	Solvent effects on the optical limiting action of C60 solutions. Molecular Physics, 1996, 88, 125-133.	1.7	15

#	Article	IF	CITATIONS
163	Concentration and wavelength dependence of the effective third-order susceptibility and optical limiting of C60in toluene solution. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 4537-4554.	1.5	273
164	Fullerene Cages Breakdown Induced in Solution by Ultraviolet Radiation: Experimental Support for the "Window" Formation in Fullerenes?. The Journal of Physical Chemistry, 1995, 99, 8200-8201.	2.9	9
165	The influence of a second resonance on the saturation characteristics of the four-wave sum mixing. IEEE Journal of Quantum Electronics, 1995, 31, 365-371.	1.9	4
166	Comparison of the efficiency of the laser photolysis of C60 and C70 fullerenes in solution. Chemical Physics Letters, 1994, 231, 314-318.	2.6	8
167	Emission spectrum in a two-photon resonant transition in mercury. Journal of the Optical Society of America B: Optical Physics, 1993, 10, 982.	2.1	3
168	<title>Double resonant four-wave sum mixing near an autoionizing state</title> ., 1993, , .		0
169	<title>Laser-induced continuum structure and third-harmonic generation in calcium</title> . , 1993, 1810, 744.		0
170	Two-Photon Resonant Third Harmonic Generation IN Hg. Laser Chemistry, 1993, 13, 129-142.	0.5	3
171	Intensity and resonance effects on the three-photon resonant third-harmonic generation in hg. Applied Physics B, Photophysics and Laser Chemistry, 1992, 54, 193-198.	1.5	1
172	The effect of an autoionizing state in the double-resonant four-wave sum mixing in Hg. Applied Physics B, Photophysics and Laser Chemistry, 1992, 55, 355-361.	1.5	6
173	Optical Limitng Action of Methano Fullerenes and Fullerenes Incorporated in Cyclodextrins. , 0, , .		0
174	Ionization and fragmentation of small molecules under intense short pulse laser radiation. , 0, , .		0