
Michele Biagioli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3830059/publications.pdf Version: 2024-02-01

MICHELE RIACIOU

#	Article	IF	CITATIONS
1	Discovery of Bile Acid Derivatives as Potent ACE2 Activators by Virtual Screening and Essential Dynamics. Journal of Chemical Information and Modeling, 2022, 62, 196-209.	2.5	15
2	GLP-1 Mediates Regulation of Colonic ACE2 Expression by the Bile Acid Receptor GPBAR1 in Inflammation. Cells, 2022, 11, 1187.	1.8	9
3	Atorvastatin protects against liver and vascular damage in a model of diet induced steatohepatitis by resetting FXR and GPBAR1 signaling. FASEB Journal, 2022, 36, e22060.	0.2	9
4	Discovery of a Potent and Orally Active Dual GPBAR1/CysLT1R Modulator for the Treatment of Metabolic Fatty Liver Disease. Frontiers in Pharmacology, 2022, 13, 858137.	1.6	4
5	Immunomodulatory functions of FXR. Molecular and Cellular Endocrinology, 2022, 551, 111650.	1.6	22
6	Bile Acid Signaling in Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 2021, 66, 674-693.	1.1	102
7	Special FX: Harnessing the Farnesoid-X-Receptor to Control Bile Acid Synthesis. Digestive Diseases and Sciences, 2021, 66, 3668-3671.	1.1	5
8	Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death and Disease, 2021, 12, 421.	2.7	9
9	Bile acids and their receptors in metabolic disorders. Progress in Lipid Research, 2021, 82, 101094.	5.3	112
10	The identification of farnesoid X receptor modulators as treatment options for nonalcoholic fatty liver disease. Expert Opinion on Drug Discovery, 2021, 16, 1193-1208.	2.5	17
11	Analysis of Gastric Cancer Transcriptome Allows the Identification of Histotype Specific Molecular Signatures With Prognostic Potential. Frontiers in Oncology, 2021, 11, 663771.	1.3	15
12	Bile Acids Activated Receptors in Inflammatory Bowel Disease. Cells, 2021, 10, 1281.	1.8	39
13	Discovery of a AHR pelargonidin agonist that counter-regulates Ace2 expression and attenuates ACE2-SARS-CoV-2 interaction. Biochemical Pharmacology, 2021, 188, 114564.	2.0	18
14	Bile acid activated receptors: Integrating immune and metabolic regulation in non-alcoholic fatty liver disease. Liver Research, 2021, 5, 119-141.	0.5	15
15	The bile acid activated receptors GPBAR1 and FXR exert antagonistic effects on autophagy. FASEB Journal, 2021, 35, e21271.	0.2	15
16	Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1. Journal of Medicinal Chemistry, 2021, 64, 16512-16529.	2.9	3
17	Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-synthetic Steroidal Agents Acting on Functional Pockets on the Receptor Binding Domain. Frontiers in Chemistry, 2020, 8, 572885.	1.8	76
18	Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders. Current Opinion in Pharmacology, 2020, 53, 45-54.	1.7	33

MICHELE BIAGIOLI

#	Article	IF	CITATIONS
19	Identification of cysteinyl-leukotriene-receptor 1 antagonists as ligands for the bile acid receptor GPBAR1. Biochemical Pharmacology, 2020, 177, 113987.	2.0	5
20	Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opinion on Investigational Drugs, 2020, 29, 623-632.	1.9	67
21	The Bile Acid Receptor GPBAR1 Modulates CCL2/CCR2 Signaling at the Liver Sinusoidal/Macrophage Interface and Reverses Acetaminophen-Induced Liver Toxicity. Journal of Immunology, 2020, 204, 2535-2551.	0.4	24
22	GPBAR1 Activation by C6-Substituted Hyodeoxycholane Analogues Protect against Colitis. ACS Medicinal Chemistry Letters, 2020, 11, 818-824.	1.3	8
23	Discovery of a Novel Multi-Strains Probiotic Formulation with Improved Efficacy toward Intestinal Inflammation. Nutrients, 2020, 12, 1945.	1.7	10
24	Opposite effects of the FXR agonist obeticholic acid on Mafg and Nrf2 mediate the development of acute liver injury in rodent models of cholestasis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158733.	1.2	22
25	The Aryl Hydrocarbon Receptor (AhR) Mediates the Counter-Regulatory Effects of Pelargonidins in Models of Inflammation and Metabolic Dysfunctions. Nutrients, 2019, 11, 1820.	1.7	25
26	Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of diet-induced dysbiosis and NASH. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1422-1437.	1.2	37
27	GPBAR1 Functions as Gatekeeper for Liver NKT Cells and provides Counterregulatory Signals in Mouse Models of Immune-Mediated Hepatitis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 447-473.	2.3	37
28	Mo2014 – Comparative Effects of Bar502, a Dual Fxr and Gpbar1 Agonist, Obeticholic Acid and Ursodeoxycholic Acid in a Rodent Model of Nash. Gastroenterology, 2019, 156, S-925-S-926.	0.6	1
29	Tu1546 – Gpbar1 is a Modulator of Liver Immunity and Its Agonism Reverses Acetaminophen-Induced Hepatotoxicity by Modulating Recruitment of Liver Macrophages. Gastroenterology, 2019, 156, S-1052.	0.6	Ο
30	Sa1518 – Mechanism of Acute Liver Decompensation Caused by Obeticholic Acid in Cholestasis is Fxr Dependent. Gastroenterology, 2019, 156, S-1231.	0.6	0
31	Sa1931 – Physico-Chemistry, Proteomics and In Vivo Comparative Tests to Reveal Variability in Multistrain Probiotic Formulations. Gastroenterology, 2019, 156, S-458.	0.6	Ο
32	Divergent Effectiveness of Multispecies Probiotic Preparations on Intestinal Microbiota Structure Depends on Metabolic Properties. Nutrients, 2019, 11, 325.	1.7	32
33	Transcriptome Analysis of Dual FXR and GPBAR1 Agonism in Rodent Model of NASH Reveals Modulation of Lipid Droplets Formation. Nutrients, 2019, 11, 1132.	1.7	21
34	Signaling from Intestine to the Host: How Bile Acids Regulate Intestinal and Liver Immunity. Handbook of Experimental Pharmacology, 2019, 256, 95-108.	0.9	29
35	Novel Isoxazole Derivatives with Potent FXR Agonistic Activity Prevent Acetaminophen-Induced Liver Injury. ACS Medicinal Chemistry Letters, 2019, 10, 407-412.	1.3	27
36	Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis. FASEB Journal, 2019, 33, 2809-2822.	0.2	40

MICHELE BIAGIOLI

#	Article	IF	CITATIONS
37	Genetic and Pharmacological Dissection of the Role of Spleen Tyrosine Kinase (Syk) in Intestinal Inflammation and Immune Dysfunction in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2018, 24, 123-135.	0.9	12
38	Immunephenotype Predicts Response to Vedolizumab: Integrating Clinical and Biochemical Biomarkers in the Treatment of Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 2018, 63, 2168-2171.	1.1	2
39	Disruption of TFGÎ ² -SMAD3 pathway by the nuclear receptor SHP mediates the antifibrotic activities of BAR704, a novel highly selective FXR ligand. Pharmacological Research, 2018, 131, 17-31.	3.1	25
40	241 - GPBAR1 (TGR5) is a Modulator of Liver Immunity and Reverses Liver Inflammation in a Mouse Models of Acute Hepatitis. Gastroenterology, 2018, 154, S-1078.	0.6	0
41	Tu1738 - The Aryl Hydrocarbon Receptor Mediates Anti-Inflammatory Activities of Natural and Synthetic Pelargonidines in Mouse Models of Colitis. Gastroenterology, 2018, 154, S-1006.	0.6	0
42	2 - GPBAR1 (TGR5) Agonism Reverses Endothelial Dysfunction and Liver Injury in a Dietetic Model of Steatohepatitis. Gastroenterology, 2018, 154, S-1.	0.6	0
43	Bile Acids Activated Receptors Regulate Innate Immunity. Frontiers in Immunology, 2018, 9, 1853.	2.2	334
44	Tu1748 - Probiotics Beyond Taxonomy: Evidence that Anti-inflammatory Properties of Live Biotherapeutic Products Require Phenotypic Characterization. Gastroenterology, 2018, 154, S-1008-S-1009.	0.6	0
45	Future trends in the treatment of non-alcoholic steatohepatitis. Pharmacological Research, 2018, 134, 289-298.	3.1	54
46	Su1053 - Bar704, a Potent and Selective Fxr Agonist Protects Against Intestinal Fibrosis. Gastroenterology, 2018, 154, S-469.	0.6	1
47	BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver steatosis and fibrosis. Scientific Reports, 2017, 7, 42801.	1.6	94
48	BAR130, a Hyodeoxycholic Acid Derivative as the First Example of Dual LXRα/GPBAR1 Agonist. Gastroenterology, 2017, 152, S634.	0.6	0
49	Variability in Industrial Production Affects Probiotics Activity: Identification of Batches of Probiotic VSL#3 that Increases Intestinal Permeability and Worsens Colitis in Rodents. Gastroenterology, 2017, 152, S969.	0.6	2
50	BAR501, A Selective Gpbar1 Agonist, Promotes Adipose Tissue Browning and Autophagy and Improves Lipid Metabolism and Steato-Hepatitis in Mice Feed a High Fat Diet. Gastroenterology, 2017, 152, S683.	0.6	0
51	GPBAR1 (TGR5) Ligation Protects Against Colitis Development by Regulating Leukocyte Traffinking and Promoting a IL-10 Dependent Shift in the M1/M2 Phenotype. Gastroenterology, 2017, 152, S135.	0.6	1
52	The Bile Acid Receptor GPBAR1 Regulates the M1/M2 Phenotype of Intestinal Macrophages and Activation of GPBAR1 Rescues Mice from Murine Colitis. Journal of Immunology, 2017, 199, 718-733.	0.4	198
53	Gpbar1 agonism promotes a Pgc-1α-dependent browning of white adipose tissue and energy expenditure and reverses diet-induced steatohepatitis in mice. Scientific Reports, 2017, 7, 13689.	1.6	36
54	Wnt/β-Catenin Signaling Induces Integrin α4β1 in T Cells and Promotes a Progressive Neuroinflammatory Disease in Mice. Journal of Immunology, 2017, 199, 3031-3041.	0.4	22

MICHELE BIAGIOLI

#	Article	IF	CITATIONS
55	Metabolic Variability of a Multispecies Probiotic Preparation Impacts on the Anti-inflammatory Activity. Frontiers in Pharmacology, 2017, 8, 505.	1.6	49
56	Navigation in bile acid chemical space: discovery of novel FXR and GPBAR1 ligands. Scientific Reports, 2016, 6, 29320.	1.6	13
57	Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice. Blood, 2015, 126, 1790-1801.	0.6	58
58	GILZ Promotes Production of Peripherally Induced Treg Cells and Mediates the Crosstalk between Glucocorticoids and TGF-β Signaling. Cell Reports, 2014, 7, 464-475.	2.9	118
59	Clucocorticoidâ€Induced Leucine Zipper (<scp>ClLZ</scp>) Controls Inflammation and Tissue Damage after Spinal Cord Injury. CNS Neuroscience and Therapeutics, 2014, 20, 973-981.	1.9	15
60	Recombinant long-glucocorticoid-induced leucine zipper (L-GILZ) protein restores the control of proliferation in gilz KO spermatogonia. European Journal of Pharmaceutical Sciences, 2014, 63, 22-28.	1.9	12