Inŝ Barroso

List of Publications by Citations

Source: https://exaly.com/author-pdf/382975/ines-barroso-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

140 32,397 59 112 h-index g-index citations papers 38,336 18.9 140 5.23 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
112	Biological, clinical and population relevance of 95 loci for blood lipids. <i>Nature</i> , 2010 , 466, 707-13	50.4	2742
111	Genetic studies of body mass index yield new insights for obesity biology. <i>Nature</i> , 2015 , 518, 197-206	50.4	2687
110	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. <i>Nature Genetics</i> , 2010 , 42, 937-48	36.3	2267
109	Discovery and refinement of loci associated with lipid levels. <i>Nature Genetics</i> , 2013 , 45, 1274-1283	36.3	1904
108	Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. <i>Nature</i> , 2011 , 478, 103-9	50.4	1564
107	Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. <i>Nature Genetics</i> , 2012 , 44, 981-90	36.3	1482
106	Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. <i>Nature Genetics</i> , 2010 , 42, 579-89	36.3	1449
105	Defining the role of common variation in the genomic and biological architecture of adult human height. <i>Nature Genetics</i> , 2014 , 46, 1173-86	36.3	1339
104	Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. <i>Nature</i> , 1999 , 402, 880-3	50.4	1129
103	New genetic loci link adipose and insulin biology to body fat distribution. <i>Nature</i> , 2015 , 518, 187-196	50.4	920
102	Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. <i>Nature Genetics</i> , 2014 , 46, 234-44	36.3	784
101	The UK10K project identifies rare variants in health and disease. <i>Nature</i> , 2015 , 526, 82-90	50.4	776
100	Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. <i>Nature Genetics</i> , 2010 , 42, 949-60	36.3	724
99	The genetic architecture of type 2 diabetes. <i>Nature</i> , 2016 , 536, 41-47	50.4	704
98	Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. <i>Nature Genetics</i> , 2012 , 44, 991-1005	36.3	621
97	A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. <i>Nature Genetics</i> , 2012 , 44, 659-69	36.3	615
96	Common variants associated with plasma triglycerides and risk for coronary artery disease. <i>Nature Genetics</i> , 2013 , 45, 1345-52	36.3	597

95	Variants in MTNR1B influence fasting glucose levels. <i>Nature Genetics</i> , 2009 , 41, 77-81	36.3	584
94	Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. <i>Nature Genetics</i> , 2010 , 42, 142-8	36.3	527
93	Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. <i>Nature Genetics</i> , 2013 , 45, 501-12	36.3	437
92	An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. <i>Diabetes</i> , 2017 , 66, 288	3 & 290	2 ₄₁₄
91	The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. <i>PLoS Genetics</i> , 2012 , 8, e1002793	6	395
90	Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. <i>PLoS Genetics</i> , 2009 , 5, e1000508	6	393
89	The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. <i>PLoS Genetics</i> , 2011 , 7, e1002003	6	336
88	Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. <i>PLoS Genetics</i> , 2012 , 8, e1002607	6	326
87	Common variants at 10 genomic loci influence hemoglobin A(C) levels via glycemic and nonglycemic pathways. <i>Diabetes</i> , 2010 , 59, 3229-39	0.9	314
86	Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. <i>Nature Genetics</i> , 2017 , 49, 17-26	36.3	312
85	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. <i>Nature Genetics</i> , 2015 , 47, 1415-25	36.3	292
84	Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. <i>Diabetes</i> , 2011 , 60, 2624-34	0.9	285
83	Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. <i>PLoS Genetics</i> , 2013 , 9, e1003500	6	277
82	Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nature Genetics, 2011 , 43, 753-60	36.3	237
81	Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. <i>Diabetes</i> , 2014 , 63, 2158-71	0.9	235
80	Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. <i>Nature Genetics</i> , 2013 , 45, 513-7	36.3	231
79	Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. <i>PLoS Biology</i> , 2003 , 1, E20	9.7	225
78	Association Between Low-Density Lipoprotein Cholesterol-Lowering Genetic Variants and Risk of Type 2 Diabetes: A Meta-analysis. <i>JAMA - Journal of the American Medical Association</i> , 2016 , 316, 1383-1	13 ³ 71 ⁴	225

77	Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. <i>PLoS Medicine</i> , 2017 , 14, e1002383	11.6	223
76	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. <i>Nature Genetics</i> , 2018 , 50, 559-571	36.3	221
75	The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. <i>PLoS Genetics</i> , 2015 , 11, e1005378	6	220
74	Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. <i>PLoS Medicine</i> , 2016 , 13, e1002179	11.6	214
73	Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans. <i>Diabetes</i> , 2010 , 59, 1266-75	0.9	211
72	Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. <i>Nature Genetics</i> , 2018 , 50, 26-41	36.3	186
71	Design and cohort description of the InterAct Project: an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC Study. <i>Diabetologia</i> , 2011 , 54, 2272-	82 ^{1.0.3}	155
70	Genetics of Type 2 diabetes. <i>Diabetic Medicine</i> , 2005 , 22, 517-35	3.5	151
69	Prospective functional classification of all possible missense variants in PPARG. <i>Nature Genetics</i> , 2016 , 48, 1570-1575	36.3	149
68	Gene-lifestyle interaction and type 2 diabetes: the EPIC interact case-cohort study. <i>PLoS Medicine</i> , 2014 , 11, e1001647	11.6	149
67	Non-DNA binding, dominant-negative, human PPARgamma mutations cause lipodystrophic insulin resistance. <i>Cell Metabolism</i> , 2006 , 4, 303-11	24.6	143
66	Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independent of obesity. <i>Diabetes</i> , 2014 , 63, 4378-4387	0.9	127
65	Genomics of disease risk in globally diverse populations. <i>Nature Reviews Genetics</i> , 2019 , 20, 520-535	30.1	105
64	Genome-wide physical activity interactions in adiposity - A meta-analysis of 200,452 adults. <i>PLoS Genetics</i> , 2017 , 13, e1006528	6	103
63	Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. <i>Cell</i> , 2014 , 156, 343-58	56.2	96
62	Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 8901-6	11.5	88
61	Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. <i>Nature Communications</i> , 2017 , 8, 80	17.4	88
60	Meta-analysis of the Gly482Ser variant in PPARGC1A in type 2 diabetes and related phenotypes. <i>Diabetologia</i> , 2006 , 49, 501-5	10.3	88

(2021-2016)

59	A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. <i>Science Translational Medicine</i> , 2016 , 8, 341ra76	17.5	77
58	Uganda Genome Resource Enables Insights into Population History and Genomic Discovery in Africa. <i>Cell</i> , 2019 , 179, 984-1002.e36	56.2	76
57	Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. <i>American Journal of Human Genetics</i> , 2017 , 100, 865-884	11	74
56	Gene dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry. Human Molecular Genetics, 2015, 24, 4728-38	5.6	68
55	Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance. <i>Journal of Clinical Investigation</i> , 2014 , 124, 4028-38	15.9	63
54	A linear mixed-model approach to study multivariate gene-environment interactions. <i>Nature Genetics</i> , 2019 , 51, 180-186	36.3	63
53	Common genetic variation in the melatonin receptor 1B gene (MTNR1B) is associated with decreased early-phase insulin response. <i>Diabetologia</i> , 2009 , 52, 1537-42	10.3	58
52	Genetic architecture of human thinness compared to severe obesity. <i>PLoS Genetics</i> , 2019 , 15, e1007603	6	51
51	The Genetic Basis of Metabolic Disease. <i>Cell</i> , 2019 , 177, 146-161	56.2	51
50	The trans-ancestral genomic architecture of glycemic traits. <i>Nature Genetics</i> , 2021 , 53, 840-860	36.3	44
49	Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression. <i>ELife</i> , 2017 , 6,	8.9	42
48	Sugar-sweetened beverage consumption and genetic predisposition to obesity in 2 Swedish cohorts. <i>American Journal of Clinical Nutrition</i> , 2016 , 104, 809-15	7	42
47	Human Semaphorin 3 Variants Link Melanocortin Circuit Development and Energy Balance. <i>Cell</i> , 2019 , 176, 729-742.e18	56.2	38
46	Genome-wide association study of type 2 diabetes in Africa. <i>Diabetologia</i> , 2019 , 62, 1204-1211	10.3	36
45	Population-specific risk of type 2 diabetes conferred by HNF4A P2 promoter variants: a lesson for replication studies. <i>Diabetes</i> , 2008 , 57, 3161-5	0.9	33
44	Genome-wide association study identifies 48 common genetic variants associated with handedness. <i>Nature Human Behaviour</i> , 2021 , 5, 59-70	12.8	33
43	Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity. <i>Scientific Reports</i> , 2017 , 7, 4394	4.9	31
42	Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. <i>Nature Communications</i> , 2021 , 12, 24	17.4	30

41	A Low-Frequency Inactivating Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. <i>Diabetes</i> , 2017 , 66, 2019-2032	0.9	29
40	Adiponectin receptor genes: mutation screening in syndromes of insulin resistance and association studies for type 2 diabetes and metabolic traits in UK populations. <i>Diabetologia</i> , 2007 , 50, 555-62	10.3	26
39	Genetic determinants of long-term changes in blood lipid concentrations: 10-year follow-up of the GLACIER study. <i>PLoS Genetics</i> , 2014 , 10, e1004388	6	25
38	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. <i>Scientific Data</i> , 2017 , 4, 170179	8.2	22
37	Loss of FTO antagonises Wnt signaling and leads to developmental defects associated with ciliopathies. <i>PLoS ONE</i> , 2014 , 9, e87662	3.7	22
36	Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis. <i>Nature Communications</i> , 2019 , 10, 1718	17.4	20
35	Polymorphisms in the gene encoding sterol regulatory element-binding factor-1c are associated with type 2 diabetes. <i>Diabetologia</i> , 2006 , 49, 2642-8	10.3	19
34	Cohort-wide deep whole genome sequencing and the allelic architecture of complex traits. <i>Nature Communications</i> , 2018 , 9, 4674	17.4	19
33	Mendelian Randomization Analysis of Hemoglobin A as a Risk Factor for Coronary Artery Disease. <i>Diabetes Care</i> , 2019 , 42, 1202-1208	14.6	17
32	Exome Sequencing Identifies Genes and Gene Sets Contributing to Severe Childhood Obesity, Linking PHIP Variants to Repressed POMC Transcription. <i>Cell Metabolism</i> , 2020 , 31, 1107-1119.e12	24.6	16
31	Established BMI-associated genetic variants and their prospective associations with BMI and other cardiometabolic traits: the GLACIER Study. <i>International Journal of Obesity</i> , 2016 , 40, 1346-52	5.5	16
30	Gene-Lifestyle Interactions in Complex Diseases: Design and Description of the GLACIER and VIKING Studies. <i>Current Nutrition Reports</i> , 2014 , 3, 400-411	6	15
29	The metabolic syndrome- associated small G protein ARL15 plays a role in adipocyte differentiation and adiponectin secretion. <i>Scientific Reports</i> , 2017 , 7, 17593	4.9	14
28	PARL Leu262Val is not associated with fasting insulin levels in UK populations. <i>Diabetologia</i> , 2006 , 49, 2649-52	10.3	14
27	Innate biology versus lifestyle behaviour in the aetiology of obesity and type 2 diabetes: the GLACIER Study. <i>Diabetologia</i> , 2016 , 59, 462-71	10.3	13
26	ProxECAT: Proxy External Controls Association Test. A new case-control gene region association test using allele frequencies from public controls. <i>PLoS Genetics</i> , 2018 , 14, e1007591	6	13
25	Genome-Wide Sequence Analysis of Kaposi Sarcoma-Associated Herpesvirus Shows Diversification Driven by Recombination. <i>Journal of Infectious Diseases</i> , 2018 , 218, 1700-1710	7	13
24	Novel genetic loci associated with long-term deterioration in blood lipid concentrations and coronary artery disease in European adults. <i>International Journal of Epidemiology</i> , 2017 , 46, 1211-1222	7.8	12

23	Human BDNF/TrkB variants impair hippocampal synaptogenesis and associate with neurobehavioural abnormalities. <i>Scientific Reports</i> , 2020 , 10, 9028	4.9	11
22	Distinct genetic architectures and environmental factors associate with host response to the Q -herpesvirus infections. <i>Nature Communications</i> , 2020 , 11, 3849	17.4	9
21	Genetic aetiology of glycaemic traits: approaches and insights. Human Molecular Genetics, 2017, 26, R17	7 <i>3</i> 5. 8 18	4 8
20	A linear mixed model approach to study multivariate gene-environment interactions		8
19	Whole-genome association study of antibody response to Epstein-Barr virus in an African population: a pilot. <i>Global Health, Epidemiology and Genomics</i> , 2017 , 2, e18	2.9	7
18	Genome-wide association analysis of type 2 diabetes in the EPIC-InterAct study. <i>Scientific Data</i> , 2020 , 7, 393	8.2	7
17	IRS2 variants and syndromes of severe insulin resistance. <i>Diabetologia</i> , 2009 , 52, 1208-11	10.3	6
16	Crucial Role of the SH2B1 PH Domain for the Control of Energy Balance. <i>Diabetes</i> , 2019 , 68, 2049-2062	0.9	6
15	is dispensable for normal fat deposition in mice. <i>DMM Disease Models and Mechanisms</i> , 2017 , 10, 1481-1	1488	5
14	ADCY3, neuronal primary cilia and obesity. <i>Nature Genetics</i> , 2018 , 50, 166-167	36.3	4
13	ADCY3, neuronal primary cilia and obesity. <i>Nature Genetics</i> , 2018 , 50, 166-167 Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes	36.3	4
	Refining the accuracy of validated target identification through coding variant fine-mapping in type	36.3 6	4 4 3
13	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes		
13	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes The influence of rare variants in circulating metabolic biomarkers. <i>PLoS Genetics</i> , 2020 , 16, e1008605 Genome-wide Association Study of Change in Fasting Glucose over time in 13,807 non-diabetic	6	3
13 12 11	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes The influence of rare variants in circulating metabolic biomarkers. <i>PLoS Genetics</i> , 2020 , 16, e1008605 Genome-wide Association Study of Change in Fasting Glucose over time in 13,807 non-diabetic European Ancestry Individuals. <i>Scientific Reports</i> , 2019 , 9, 9439 Associations Between Glycemic Traits and Colorectal Cancer: A Mendelian Randomization Analysis	6 4.9	3
13 12 11	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes The influence of rare variants in circulating metabolic biomarkers. <i>PLoS Genetics</i> , 2020 , 16, e1008605 Genome-wide Association Study of Change in Fasting Glucose over time in 13,807 non-diabetic European Ancestry Individuals. <i>Scientific Reports</i> , 2019 , 9, 9439 Associations Between Glycemic Traits and Colorectal Cancer: A Mendelian Randomization Analysis <i>Journal of the National Cancer Institute</i> , 2022 , Obesity-Associated Mutations and the Melanocortin Pathway. <i>New England Journal of Medicine</i> ,	6 4.9 9.7	3 3
13 12 11 10 9	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes The influence of rare variants in circulating metabolic biomarkers. <i>PLoS Genetics</i> , 2020 , 16, e1008605 Genome-wide Association Study of Change in Fasting Glucose over time in 13,807 non-diabetic European Ancestry Individuals. <i>Scientific Reports</i> , 2019 , 9, 9439 Associations Between Glycemic Traits and Colorectal Cancer: A Mendelian Randomization Analysis <i>Journal of the National Cancer Institute</i> , 2022 , Obesity-Associated Mutations and the Melanocortin Pathway. <i>New England Journal of Medicine</i> , 2021 , 385, 1581-1592 Genome-wide scale analyses identify novel BMI genotype-environment interactions using a	6 4.9 9.7	3 3 2

5	Identification of rare loss of function genetic variation regulating body fat distribution. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2021 ,	5.6	1
4	Insights into the genetic architecture of haematological traits from deep phenotyping and whole-genome sequencing for two Mediterranean isolated populations <i>Scientific Reports</i> , 2022 , 12, 1131	4.9	O
3	Predicting novel candidate human obesity genes and their site of action by systematic functional screening in Drosophila. <i>PLoS Biology</i> , 2021 , 19, e3001255	9.7	О
2	The flashfm approach for fine-mapping multiple quantitative traits. <i>Nature Communications</i> , 2021 , 12, 6147	17.4	O
1	The importance of increasing population diversity in genetic studies of type 2 diabetes and related glycaemic traits. <i>Diabetologia</i> , 2021 , 64, 2653-2664	10.3	О