Ekaterina D Grayfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3829700/publications.pdf

Version: 2024-02-01

623734 610901 1,011 27 14 24 citations g-index h-index papers 30 30 30 1862 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pt-Decorated Boron Nitride Nanosheets as Artificial Nanozyme for Detection of Dopamine. ACS Applied Materials & Dopamine. ACS Applied & Dopamine. ACS Applied Materials & Dopamine. ACS Applied & Dopamine. AC	8.0	166
2	Colloidal 2D nanosheets of MoS 2 and other transition metal dichalcogenides through liquid-phase exfoliation. Advances in Colloid and Interface Science, 2017, 245, 40-61.	14.7	143
3	Functionalization and Dispersion of Hexagonal Boron Nitride (hâ€BN) Nanosheets Treated with Inorganic Reagents. Chemistry - an Asian Journal, 2012, 7, 554-560.	3. 3	116
4	Synthesis, Crystal Structure, and Colloidal Dispersions of Vanadium Tetrasulfide (VS ₄). Chemistry - A European Journal, 2015, 21, 4639-4645.	3.3	76
5	The synthesis and properties of highly exfoliated graphites from fluorinated graphite intercalation compounds. Carbon, 2011, 49, 3233-3241.	10.3	69
6	Graphene: chemical approaches to the synthesis and modification. Russian Chemical Reviews, 2011, 80, 751-770.	6.5	60
7	Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries. ChemSusChem, 2017, 10, 4805-4811.	6.8	56
8	Chemically modified graphene sheets by functionalization of highly exfoliated graphite. Journal of Materials Chemistry, 2011, 21, 3410-3414.	6.7	52
9	The effect of support properties on the activity of Pd/C catalysts in the liquid-phase hydrodechlorination of chlorobenzene. Applied Catalysis A: General, 2010, 379, 87-94.	4.3	37
10	Ultradisperse Pt nanoparticles anchored on defect sites in oxygen-free few-layer graphene and their catalytic properties in CO oxidation. Carbon, 2015, 89, 290-299.	10.3	37
11	Colloidal solutions of niobium trisulfide and niobium triselenide. Journal of Materials Chemistry C, 2014, 2, 5479-5486.	5 . 5	34
12	Hexamolybdenum Clusters Supported on Exfoliated h-BN Nanosheets for Photocatalytic Water Purification. Inorganic Chemistry, 2020, 59, 6439-6448.	4.0	33
13	Synthesis, Properties, and Dispersion of Fewâ€Layer Graphene Fluoride. Chemistry - an Asian Journal, 2013, 8, 2015-2022.	3.3	27
14	Oxidizing Properties of the Polysulfide Surfaces of Patronite VS ₄ and NbS ₃ Induced by (S ₂) ^{2â^²} Groups: Unusual Formation of Ag ₂ S Nanoparticles. Advanced Materials Interfaces, 2017, 4, 1700999.	3.7	19
15	Highly Exfoliated Graphite Fluoride as a Precursor for Graphene Fluoride Dispersions and Films. Croatica Chemica Acta, 0, , 107-112.	0.4	15
16	A DFT study and experimental evidence of the sonication-induced cleavage of molybdenum sulfide Mo ₂ S ₃ in liquids. Journal of Materials Chemistry C, 2017, 5, 6601-6610.	5.5	13
17	Photoluminescent nanographitic/nitrogen-doped graphitic hollow shells as a potential candidate for biological applications. Journal of Materials Chemistry B, 2013, 1, 1229.	5.8	12
18	Theoretical and experimental comparative study of the stability and phase transformations of sesquichalcogenides $M < sub > 2 < / sub > Q < sub > 3 < / sub > (M = Nb, Mo; Q = S, Se)$. Physical Chemistry Chemical Physics, 2019, 21, 1454-1463.	2.8	11

#	Article	IF	Citations
19	Liquid-phase hydrodechlorination of chlorobenzene by molecular hydrogen: The influence of reaction medium on process efficiency. Pure and Applied Chemistry, 2009, 81, 2107-2114.	1.9	7
20	Metal Polysulfides of Groups 4–6: From Bulk Samples to Nanoscale Materials. Journal of Structural Chemistry, 2018, 59, 913-921.	1.0	6
21	Revealing the Flexible 1D Primary and Globular Secondary Structures of Sulfurâ€Rich Amorphous Transition Metal Polysulfides. ChemNanoMat, 2019, 5, 1488-1497.	2.8	6
22	Thermal and kinetic studies of sulfur-rich molybdenum and tungsten polysulfides. Journal of Alloys and Compounds, 2021, 851, 156705.	5.5	6
23	Metal-metal bond excitation in colloidal solution of NbS 3. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 179, 46-50.	3.9	4
24	Microwave exfoliation of organic-intercalated fluorographites. Chemical Communications, 2020, 56, 1895-1898.	4.1	4
25	Amorphous pentasulfides MS5 (MÂ=ÂMo, W) in reactions with thiuram disulfide and halogens. Inorganica Chimica Acta, 2020, 512, 119875.	2.4	2
26	Highly exfoliated graphite as a precursor for graphene materials. , 2010, , .		0
27	Graphene dispersion and graphene paper from highly exfoliated graphite. , 2011, , .		O