Motomasa Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3829604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amyloid conformation-dependent disaggregation in a reconstituted yeast prion system. Nature Chemical Biology, 2022, 18, 321-331.	3.9	18
2	Regulation of sensorimotor gating via Disc1/Huntingtin-mediated Bdnf transport in the cortico-striatal circuit. Molecular Psychiatry, 2022, , .	4.1	1
3	Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. Science Advances, 2021, 7, .	4.7	30
4	A perspective on the potential involvement of impaired proteostasis in neuropsychiatric disorders. Biological Psychiatry, 2021, , .	0.7	5
5	Short disordered protein segment regulates cross-species transmission of a yeast prion. Nature Chemical Biology, 2020, 16, 756-765.	3.9	12
6	Regulation of Metabolism and Structural Polymorphism of Amyloid Fibrils. Seibutsu Butsuri, 2020, 60, 236-240.	0.0	0
7	Autophagy links MTOR and GABA signaling in the brain. Autophagy, 2019, 15, 1848-1849.	4.3	30
8	Translation from the Ribosome to the Clinic: Implication in Neurological Disorders and New Perspectives from Recent Advances. Biomolecules, 2019, 9, 680.	1.8	7
9	Distinct segregation patterns of yeast cell-peripheral proteins uncovered by a method for protein segregatome analysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8909-8918.	3.3	19
10	GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABA _A receptor trafficking and social behavior. Science Advances, 2019, 5, eaau8237.	4.7	41
11	Molecular basis for diversification of yeast prion strain conformation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2389-2394.	3.3	44
12	TAR DNA-Binding Protein 43 and Disrupted in Schizophrenia 1 Coaggregation Disrupts Dendritic Local Translation and Mental Function in Frontotemporal Lobar Degeneration. Biological Psychiatry, 2018, 84, 509-521.	0.7	26
13	Genome-wide Translation Profiling by Ribosome-Bound tRNA Capture. Cell Reports, 2018, 23, 608-621.	2.9	25
14	438. Amyloidogenic DISC1: Role for Psychiatric Manifestation in Neurodegenerative Disorders. Biological Psychiatry, 2017, 81, S179.	0.7	1
15	Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease. Journal of the Neurological Sciences, 2017, 381, 1035.	0.3	0
16	Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease. Journal of Clinical Investigation, 2017, 127, 1438-1450.	3.9	36
17	Analysis of induced pluripotent stem cells carrying 22q11.2 deletion. Translational Psychiatry, 2016, 6, e934-e934.	2.4	85
18	[KIL-d] Protein Element Confers Antiviral Activity via Catastrophic Viral Mutagenesis. Molecular Cell, 2015. 60. 651-660.	4.5	8

#	Article	IF	CITATIONS
19	Autophagy-Related Protein 7 Deficiency in Amyloid β (Aβ) Precursor Protein Transgenic Mice Decreases Aβ in the Multivesicular Bodies and Induces Aβ Accumulation in the Golgi. American Journal of Pathology, 2015, 185, 305-313.	1.9	70
20	Layers of structure and function in protein aggregation. Nature Chemical Biology, 2015, 11, 373-377.	3.9	35
21	Self-propagating amyloid as a critical regulator for diverse cellular functions. Journal of Biochemistry, 2014, 155, 345-351.	0.9	11
22	AÎ ² Secretion and Plaque Formation Depend on Autophagy. Cell Reports, 2013, 5, 61-69.	2.9	386
23	Active conversion to the prion state as a molecular switch for cellular adaptation to environmental stress. BioEssays, 2013, 35, 12-16.	1.2	11
24	A Yeast Prion, Mod5, Promotes Acquired Drug Resistance and Cell Survival Under Environmental Stress. Science, 2012, 336, 355-359.	6.0	210
25	Radically Different Amyloid Conformations Dictate the Seeding Specificity of a Chimeric Sup35 Prion. Journal of Molecular Biology, 2011, 408, 1-8.	2.0	12
26	Aging causes distinct characteristics of polyglutamine amyloids in vivo. Genes To Cells, 2011, 16, 557-564.	0.5	11
27	Tracking a toxic polyQ epitope. Nature Chemical Biology, 2011, 7, 861-862.	3.9	0
28	Differences in prion strain conformations result from non-native interactions in a nucleus. Nature Chemical Biology, 2010, 6, 225-230.	3.9	70
29	A Protein Transformation Protocol for Introducing Yeast Prion Particles into Yeast. Methods in Enzymology, 2010, 470, 681-693.	0.4	8
30	Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9679-9684.	3.3	201
31	Enclosed chambers for humidity control and sample containment in fiber diffraction. Journal of Applied Crystallography, 2008, 41, 206-209.	1.9	27
32	Biochemical and Functional Analysis of the Assembly of Full-length Sup35p and Its Prion-forming Domain. Journal of Biological Chemistry, 2007, 282, 1679-1686.	1.6	49
33	An Efficient Protein Transformation Protocol for Introducing Prions into Yeast. Methods in Enzymology, 2006, 412, 185-200.	0.4	45
34	The physical basis of how prion conformations determine strain phenotypes. Nature, 2006, 442, 585-589.	13.7	552
35	A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. Journal of Molecular Medicine, 2005, 83, 343-352.	1.7	76
36	Mechanism of Cross-Species Prion Transmission. Cell, 2005, 121, 49-62.	13.5	172

ΜΟΤΟΜΑSA ΤΑΝΑΚΑ

#	Article	IF	CITATIONS
37	Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature Medicine, 2004, 10, 148-154.	15.2	701
38	Conformational variations in an infectious protein determine prion strain differences. Nature, 2004, 428, 323-328.	13.7	747
39	Eukaryotic Proteasomes Cannot Digest Polyglutamine Sequences and Release Them during Degradation of Polyglutamine-Containing Proteins. Molecular Cell, 2004, 14, 95-104.	4.5	363
40	Activation of Hydrogen Peroxide in Horseradish Peroxidase Occurs within â^1⁄4200Î1⁄4s Observed by a New Freeze-Quench Device. Biophysical Journal, 2003, 84, 1998-2004.	0.2	54
41	Expansion of Polyglutamine Induces the Formation of Quasi-aggregate in the Early Stage of Protein Fibrillization. Journal of Biological Chemistry, 2003, 278, 34717-34724.	1.6	47
42	The Effects of Aggregation-Inducing Motifs on Amyloid Formation of Model Proteins Related to Neurodegenerative Diseasesâ€. Biochemistry, 2002, 41, 10277-10286.	1.2	24
43	Intra- and Intermolecular β-Pleated Sheet Formation in Glutamine-repeat Inserted Myoglobin as a Model for Polyglutamine Diseases. Journal of Biological Chemistry, 2001, 276, 45470-45475.	1.6	97
44	Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Human Molecular Genetics, 2000, 9, 2009-2018.	1.4	386
45	Direct electron transfer catalysed by recombinant forms of horseradish peroxidase: insight into the mechanism. Electrochemistry Communications, 1999, 1, 171-175.	2.3	70
46	Luminol Activity of Horseradish Peroxidase Mutants Mimicking a Proposed Binding Site for Luminol inArthromyces ramosusPeroxidaseâ€. Biochemistry, 1999, 38, 10463-10473.	1.2	19
47	Structural Roles of the Highly Conserved Glu Residue in the Heme Distal Site of Peroxidasesâ€. Biochemistry, 1998, 37, 2629-2638.	1.2	31
48	Detection of a Tryptophan Radical as an Intermediate Species in the Reaction of Horseradish Peroxidase Mutant (Phe-221 → Trp) and Hydrogen Peroxide. Journal of Biological Chemistry, 1998, 273, 14753-14760.	1.6	40
49	Structureactivity relation of horseradish peroxidases as studied with mutations at heme distal and proximal sites. Pure and Applied Chemistry, 1998, 70, 911-916.	0.9	7
50	Hydrogen Bond Network in the Distal Site of Peroxidases: Spectroscopic Properties of Asn70 → Asp Horseradish Peroxidase Mutantâ€. Biochemistry, 1997, 36, 9791-9798.	1.2	44
51	Effects of Concerted Hydrogen Bonding of Distal Histidine on Active Site Structures of Horseradish Peroxidase. Resonance Raman Studies with Asn70 Mutants. Journal of the American Chemical Society, 1997, 119, 1758-1766.	6.6	81
52	Catalytic Roles of the Distal Site Asparagineâ~'Histidine Couple in Peroxidasesâ€. Biochemistry, 1996, 35, 14251-14258.	1.2	94