Mustafa Bayram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3829575/publications.pdf Version: 2024-02-01

		218677	315739
112	2,128	26	38
papers	citations	h-index	g-index
112	112	112	1391
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Generalized Gegenbauer–Humbert wavelets for solving fractional partial differential equations. Engineering With Computers, 2023, 39, 1363-1374.	6.1	1
2	Traveling wave structures of some fourth-order nonlinear partial differential equations. Journal of Ocean Engineering and Science, 2023, 8, 124-132.	4.3	11
3	Oleuropein extraction from leaves of three olive varieties (<i>Olea europaea</i> L.): Antioxidant and antimicrobial properties of purified oleuropein and oleuropein extracts. Journal of Food Processing and Preservation, 2022, 46, e15697.	2.0	16
4	A comparison of analytical solutions of nonlinear complex generalized Zakharov dynamical system for various definitions of the differential operator. Electronic Research Archive, 2022, 30, 335-361.	0.9	17
5	New Fractional Modelling, Analysis and Control of the Three Coupled Multiscale Non-Linear Buffering System. International Journal of Applied and Computational Mathematics, 2022, 8, 86.	1.6	1
6	On the optical soliton solutions of Kundu–Mukherjee–Naskar equation via two different analytical methods. Optik, 2022, 257, 168761.	2.9	47
7	Optical solitons and other solutions to the Hirota–Maccari system with conformable, M-truncated and beta derivatives. Modern Physics Letters B, 2022, 36, .	1.9	24
8	Novel soliton solutions of Sasa–Satsuma model with local derivative via an analytical technique. Journal of Laser Applications, 2022, 34, .	1.7	8
9	Optical solitons of the Kudryashov Equation via an analytical technique. Optical and Quantum Electronics, 2022, 54, 1.	3.3	9
10	Optical solitons with Kudryashov's sextic power-law nonlinearity. Optik, 2022, 261, 169202.	2.9	41
11	Dark, bright and singular optical solutions of the Kaup–Newell model with two analytical integration schemes. Optik, 2022, 261, 169110.	2.9	22
12	Numerical approximations and conservation laws for the Sine-Gordon equation. Journal of Geometry and Physics, 2022, 178, 104556.	1.4	1
13	On the analytical optical soliton solutions of perturbed Radhakrishnan–Kundu–Lakshmanan model with Kerr law nonlinearity. Optical and Quantum Electronics, 2022, 54, .	3.3	26
14	Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method. Optical and Quantum Electronics, 2022, 54, .	3.3	43
15	Perturbation of dispersive optical solitons with Schrödinger–Hirota equation with Kerr law and spatio-temporal dispersion. Optik, 2022, 265, 169545.	2.9	25
16	An encyclopedia of Kudryashov's integrability approaches applicable to optoelectronic devices. Optik, 2022, 265, 169499.	2.9	60
17	Modeling the effect of horizontal and vertical transmissions of HIV infection with Caputo fractional derivative. Chaos, Solitons and Fractals, 2021, 145, 110794.	5.1	14
18	Soliton Solutions of \$\$(2+1)\$\$ Dimensional Heisenberg Ferromagnetic Spin Equation by the Extended Rational \$\$sine-cosine\$\$ and \$\$sinh-cosh\$\$ Method. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	1.6	18

#	Article	IF	CITATIONS
19	The analytical solutions of Zoomeron equation via extended rational sin-cos and sinh-cosh methods. Physica Scripta, 2021, 96, 094002.	2.5	43
20	Optical solitons and other solutions to the Radhakrishnan-Kundu-Lakshmanan equation. Optik, 2021, 242, 167363.	2.9	34
21	On solitary wave solutions for the perturbed Chen–Lee–Liu equation via an analytical approach. Optik, 2021, 245, 167641.	2.9	40
22	Optical Soliton Solutions to Chen Lee Liu model by the modified extended tanh expansion scheme. Optik, 2021, 245, 167643	2.9	39
23	Id="d1e311" altimg="si3.svg"> <mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo) etqq1<br="" ij="">Biswas–Milovic equation using modified extended<mml:math< td=""><td>2.9</td><td>.4 rgBT /Overli 39</td></mml:math<></mml:mo)></mml:mrow>	2.9	.4 rgBT /Overli 39
24	Aminsumia "interpliwww.wo.org/1990/Wath/WathWit display="inline"id="ofe925" An application of Genocchi wavelets for solving the fractional Rosenau-Hyman equationâ~†. AEJ - Alexandria Engineering Journal, 2021, 60, 5331-5340.	6.4	22
25	Antifungal activity of chitosan against soil-borne plant pathogens in cucumber and a molecular docking study. Journal of Taibah University for Science, 2021, 15, 852-860.	2.5	5
26	An algorithm for numerical solution of some nonlinear multi-dimensional parabolic partial differential equations. Journal of Computational Science, 2021, 56, 101487.	2.9	4
27	Attitude of the Modulation Instability gain in Oppositely Directed Coupler with the effects of the Intrapulse Raman Scattering and Saturable Function. Results in Physics, 2021, 31, 104851.	4.1	8
28	Bulgur cooking process: Recovery of energy and wastewater. Journal of Food Engineering, 2020, 269, 109734.	5.2	9
29	Breather wave, lump-periodic solutions and some other interaction phenomena to the Caudrey–Dodd–Gibbon equation. European Physical Journal Plus, 2020, 135, 1.	2.6	44
30	Nonautonomous complex wave solutions to the (2+1)-dimensional variable-coefficients nonlinear Chiral SchrĶdinger equation. Results in Physics, 2020, 19, 103604.	4.1	34
31	The generalized Gegenbauer-Humberts wavelet for solving fractional differential equations. Thermal Science, 2020, 24, 107-118.	1.1	2
32	Interactive goal programming algorithm with Taylor series and interval type 2 fuzzy numbers. International Journal of Machine Learning and Cybernetics, 2019, 10, 1563-1579.	3.6	6
33	Optical solitons to the (n + 1)-dimensional nonlinear Schrödinger's equation with Kerr law and power law nonlinearities using two integration schemes. Modern Physics Letters B, 2019, 33, 1950224.	1.9	14
34	Theory and application for the time fractional Gardner equation with Mittag-Leffler kernel. Journal of Taibah University for Science, 2019, 13, 813-819.	2.5	32
35	On numerical solution of the time-fractional diffusion-wave equation with the fictitious time integration method. European Physical Journal Plus, 2019, 134, 1.	2.6	13
36	Exact optical solitons of Radhakrishnan–Kundu–Lakshmanan equation with Kerr law nonlinearity. Modern Physics Letters B, 2019, 33, 1950061.	1.9	23

#	Article	IF	CITATIONS
37	The Gegenbauer Wavelets-Based Computational Methods for the Coupled System of Burgers' Equations with Time-Fractional Derivative. Mathematics, 2019, 7, 486.	2.2	22
38	On Numerical Solution Of The Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative. Open Physics, 2019, 17, 816-822.	1.7	14
39	Symmetry reductions, explicit solutions, convergence analysis and conservation laws via multipliers approach to the Chen–Lee–Liu model in nonlinear optics. Modern Physics Letters B, 2019, 33, 1950035.	1.9	10
40	Polynomial based differential quadrature for numerical solutions of Kuramoto-Sivashinsky equation. Thermal Science, 2019, 23, 129-137.	1.1	3
41	Legendre wavelet operational matrix method for solving fractional differential equations in some special conditions. Thermal Science, 2019, 23, 203-214.	1.1	5
42	Oscillation properties of solutions of fractional difference equations. Thermal Science, 2019, 23, 185-192.	1.1	3
43	Interactive Fuzzy Goal Programming Based on Taylor Series to Solve Multiobjective Nonlinear Programming Problems With Interval Type-2 Fuzzy Numbers. IEEE Transactions on Fuzzy Systems, 2018, 26, 2434-2449.	9.8	17
44	Mathematical modeling of packed bed and microwave drying of enriched couscous. Journal of Food Measurement and Characterization, 2018, 12, 1723-1733.	3.2	7
45	Effects of different tea concentrations and extraction durations on caffeine and phenolics of tea liqueurs. Journal of Food Measurement and Characterization, 2018, 12, 285-291.	3.2	2
46	Antioxidant phenolic compounds of pomegranate wines produced by different maceration methods. Journal of the Institute of Brewing, 2018, 124, 38-44.	2.3	12
47	A Hermite Polynomial Approach for Solving the SIR Model of Epidemics. Mathematics, 2018, 6, 305.	2.2	14
48	Numerical methods for simulation of stochastic differential equations. Advances in Difference Equations, 2018, 2018, .	3.5	41
49	A solution method for integro-differential equations of conformable fractional derivative. Thermal Science, 2018, 22, 7-14.	1.1	10
50	Determination of some individual phenolic compounds and antioxidant capacity of mead produced from different types of honey. Journal of the Institute of Brewing, 2017, 123, 167-174.	2.3	32
51	Development and characterization of couscous-like product using bulgur flour as by-product. Journal of Food Science and Technology, 2017, 54, 4452-4463.	2.8	8
52	Usage of undersize bulgur flour in production of short-cut pasta-like couscous. Journal of Cereal Science, 2017, 77, 102-109.	3.7	13
53	Modeling of vibration for functionally graded beams. Open Mathematics, 2016, 14, 661-672.	1.0	10
54	Oscillation criteria for nonlinear fractional differential equation with damping term. Open Physics, 2016, 14, 119-128.	1.7	8

4

#	Article	IF	CITATIONS
55	On the solutions of a higherâ€order difference equation in terms of generalized Fibonacci sequences. Mathematical Methods in the Applied Sciences, 2016, 39, 2974-2982.	2.3	25
56	Oscillation of fractional order functional differential equations with nonlinear damping. Open Physics, 2015, 13, .	1.7	4
57	Approximate Solution of Time-Fractional Advection-Dispersion Equation via Fractional Variational Iteration Method. Scientific World Journal, The, 2014, 2014, 1-5.	2.1	6
58	Analytical approximate solution of time-fractional Fornberg–Whitham equation by the fractional variational iteration method. AEJ - Alexandria Engineering Journal, 2014, 53, 911-915.	6.4	4
59	Coefficient Estimates and Other Properties for a Class of Spirallike Functions Associated with a Differential Operator. Abstract and Applied Analysis, 2013, 2013, 1-7.	0.7	9
60	A Numerical Method for Partial Differential Algebraic Equations Based on Differential Transform Method. Abstract and Applied Analysis, 2013, 2013, 1-8.	0.7	1
61	Sinc-Galerkin method for approximate solutions of fractional order boundary value problems. Boundary Value Problems, 2013, 2013, .	0.7	22
62	Efficient Variational Approaches for Deformable Registration of Images. Abstract and Applied Analysis, 2012, 2012, 1-8.	0.7	1
63	Numerical comparison of methods for solving fractional differential–algebraic equations (FDAEs). Computers and Mathematics With Applications, 2011, 62, 3270-3278.	2.7	24
64	Removal of Ochratoxin A (OTA) from Naturally Contaminated Wines During the Vinification Process. Journal of the Institute of Brewing, 2011, 117, 456-461.	2.3	20
65	Approximate analytical solution for the fractional modified KdV by differential transform method. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1777-1782.	3.3	67
66	Traditional Aniseed-Flavored Spirit Drinks. Food Reviews International, 2010, 26, 246-269.	8.4	32
67	Determination of Chloroanisoles and Chlorophenols in Cork and Wine by using HS-SPME and GC-ECD Detection. Journal of the Institute of Brewing, 2009, 115, 71-77.	2.3	27
68	Ochratoxin A in Wines. Food Reviews International, 2009, 25, 214-232.	8.4	32
69	Ternary milling of bulgur with four rollers. Journal of Food Engineering, 2008, 84, 394-399.	5.2	13
70	Biogenic Amines in Wines. Food Reviews International, 2008, 25, 86-102.	8.4	86
71	The use of bulgur as a meat replacement: bulgur-sucuk (a vegetarian dry-fermented sausage). Journal of the Science of Food and Agriculture, 2007, 87, 411-419.	3.5	12
72	Bulgur milling using roller, double disc and vertical disc mills. Journal of Food Engineering, 2007, 79, 181-187.	5.2	32

#	Article	IF	CITATIONS
73	Determination of the cooking degree for bulgur production using amylose/iodine, centre cutting and light scattering methods. Food Control, 2006, 17, 331-335.	5.5	11
74	Colour and textural attributes of sucuk during ripening. Meat Science, 2006, 73, 344-350.	5.5	124
75	Numerical solution of differential–algebraic equations with index-2. Applied Mathematics and Computation, 2006, 174, 1279-1289.	2.2	17
76	On the numerical solution of differential-algebraic equations with index-3. Applied Mathematics and Computation, 2006, 175, 1320-1331.	2.2	8
77	Determination of applicability and effects of colour sorting system in bulgur production line. Journal of Food Engineering, 2006, 74, 232-239.	5.2	20
78	Determination of the sphericity of granular food materials. Journal of Food Engineering, 2005, 68, 385-390.	5.2	20
79	The numerical solution of physical problems modeled as a systems of differential-algebraic equations (DAEs). Journal of the Franklin Institute, 2005, 342, 1-6.	3.4	25
80	Derivation of conservation relationships for catalytic cycles using MAPLE. Applied Mathematics and Computation, 2005, 160, 189-195.	2.2	0
81	Automatic calculation of the fundamental group of an oriented surface of genus n with k boundary surfaces. Applied Mathematics and Computation, 2005, 162, 1-6.	2.2	27
82	On the numerical solution of stiff systems. Applied Mathematics and Computation, 2005, 170, 230-236.	2.2	25
83	Metabolic control analysis of trio enzymes system. Applied Mathematics and Computation, 2005, 170, 948-957.	2.2	3
84	Stone, disc and hammer milling of bulgur. Journal of Cereal Science, 2005, 41, 291-296.	3.7	28
85	Modelling of cooking of wheat to produce bulgur. Journal of Food Engineering, 2005, 71, 179-186.	5.2	27
86	The modified successive approximations method and padé approximants for solving the differential equation with variant retarded argumend. Applied Mathematics and Computation, 2004, 151, 393-400.	2.2	5
87	A numerical solution of the elasticity problem of settled of the wronkler ground with variable coefficients. Applied Mathematics and Computation, 2004, 150, 821-831.	2.2	Ο
88	Application of computer algebra matrix operation techniques to the control of metabolic networks. Applied Mathematics and Computation, 2004, 152, 289-297.	2.2	1
89	A computer program to calculate Alexander polynomial from Braids presentation of the given knot. Applied Mathematics and Computation, 2004, 153, 199-204.	2.2	3
90	Numerical solution of differential–algebraic equation systems and applications. Applied Mathematics and Computation, 2004, 154, 405-413.	2.2	17

#	Article	IF	CITATIONS
91	The basic successive substitute approximations method and Padé approximations to solve the elasticity problem of settled of the wronkler ground with variable coefficients. Applied Mathematics and Computation, 2004, 154, 495-505.	2.2	1
92	Changes in properties of soaking water during production of soy-bulgur. Journal of Food Engineering, 2004, 61, 221-230.	5.2	62
93	Influence of soaking on the dimensions and colour of soybean for bulgur production. Journal of Food Engineering, 2004, 61, 331-339.	5.2	44
94	Effect of cooking time and temperature on the dimensions and crease of the wheat kernel during bulgur production. Journal of Food Engineering, 2004, 64, 43-51.	5.2	32
95	Arbitrary order numerical method for solving differential-algebraic equation by Padé series. Applied Mathematics and Computation, 2003, 137, 57-65.	2.2	27
96	The modified two sided approximations method and Padé approximants for solving the differential equation with variant retarded argument. Applied Mathematics and Computation, 2003, 144, 475-482.	2.2	4
97	The ordinary successive approximations method and Padé approximants for solving a differential equation with variant retarded argument. Applied Mathematics and Computation, 2003, 144, 173-180.	2.2	8
98	Automatic calculation of Alexander polynomials of (3,k)-Torus knots. Applied Mathematics and Computation, 2003, 136, 505-510.	2.2	5
99	On the numerical solution of differential-algebraic equations by Padé series. Applied Mathematics and Computation, 2003, 137, 151-160.	2.2	38
100	Numerical solutions of chemical differential-algebraic equations. Applied Mathematics and Computation, 2003, 139, 259-264.	2.2	15
101	Numerical method to solve chemical differential-algebraic equations. International Journal of Quantum Chemistry, 2002, 89, 447-451.	2.0	31
102	Simultaneous solution of polynomial equations. Applied Mathematics and Computation, 2002, 133, 533-538.	2.2	1
103	Derivation of conservation relationships for metabolic networks using MAPLE. Applied Mathematics and Computation, 2000, 112, 255-263.	2.2	6
104	Parameter estimation of an enzyme kinetic system using computer algebra techniques. Applied Mathematics and Computation, 1999, 99, 93-98.	2.2	6
105	Application of computer algebra techniques to enzyme kinetics. Applied Mathematics and Computation, 1998, 94, 73-81.	2.2	3
106	Application of computer algebra techniques to affinity binding equations. Applied Mathematics and Computation, 1998, 94, 83-90.	2.2	1
107	A novel method for analyzing enzyme kinetic systems. Applied Mathematics and Computation, 1997, 87, 161-174.	2.2	1
108	Automatic analysis of the control of metabolic networks. Computers in Biology and Medicine, 1996, 26, 401-408.	7.0	13

#	Article	IF	CITATIONS
109	An Application of the Differential Transform Method to the Biochemical Reaction Systems. Applied Mechanics and Materials, 0, 319, 151-156.	0.2	0
110	Solitary wave solutions of chiral nonlinear Schrödinger equations. Modern Physics Letters B, O, , 2150472.	1.9	12
111	Solving the fractional Jaulent–Miodek system via a modified Laplace decomposition method. Waves in Random and Complex Media, 0, , 1-14.	2.7	10
112	Effect of oak chips addition on the phenolic composition of grape vinegar in fermentation process. Journal of Food Measurement and Characterization, 0, , 1.	3.2	4