Xian-hui Bu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3829427/publications.pdf

Version: 2024-02-01

303 28,100 96 153
papers citations h-index g-index

346 346 346 17360 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Atomically precise metal chalcogenide supertetrahedral clusters: frameworks to molecules, and structure to function. National Science Review, 2022, 9, nwab076.	4.6	34
2	Simultaneous Control of Poreâ€Space Partition and Charge Distribution in Multiâ€Modular Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
3	Electron Redistributed Sâ€Doped Nickel Iron Phosphides Derived from Oneâ€Step Phosphatization of MOFs for Significantly Boosting Electrochemical Water Splitting. Advanced Functional Materials, 2022, 32, .	7. 8	93
4	Pore space partition of metal-organic frameworks for gas storage and separation. EnergyChem, 2022, 4, 100080.	10.1	35
5	Tunable Metal–Organic Frameworks Based on 8â€Connected Metal Trimers for High Ethane Uptake. Small, 2021, 17, e2003167.	5. 2	19
6	Selective Crystallization of Rareâ€Earth Ions into Cationic Metalâ€Organic Frameworks for Rareâ€Earth Separation. Angewandte Chemie - International Edition, 2021, 60, 11148-11152.	7. 2	38
7	Selective Crystallization of Rareâ€Earth lons into Cationic Metalâ€Organic Frameworks for Rareâ€Earth Separation. Angewandte Chemie, 2021, 133, 11248-11252.	1.6	4
8	Ultrahighâ€Uptake Capacityâ€Enabled Gas Separation and Fruit Preservation by a New Singleâ€Walled Nickel–Organic Framework. Advanced Science, 2021, 8, 2003141.	5.6	38
9	ZIF-8 derived carbon materials with multifunctional selective adsorption abilities. Carbon, 2021, 176, 421-430.	5.4	30
10	Pore-Space Partition and Optimization for Propane-Selective High-Performance Propane/Propylene Separation. ACS Applied Materials & Separation.	4.0	50
11	Ultrastable High-Connected Chromium Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 14470-14474.	6.6	57
12	Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy and Environmental Science, 2021, 14, 1897-1927.	15.6	415
13	Crystalline Inorganic Materials From Supertetrahedral Chalcogenide Clusters., 2021,,.		1
14	Bimetallic Rodâ€Packing Metal–Organic Framework Combining Two Charged Forms of 2â€Hydroxyterephthalic Acid. Chemistry - A European Journal, 2020, 26, 11146-11149.	1.7	6
15	Metal Chalcogenide Supertetrahedral Clusters: Synthetic Control over Assembly, Dispersibility, and Their Functional Applications. Accounts of Chemical Research, 2020, 53, 2261-2272.	7.6	87
16	A Strategy for Constructing Pore‧paceâ€Partitioned MOFs with High Uptake Capacity for C 2 Hydrocarbons and CO 2. Angewandte Chemie, 2020, 132, 19189-19192.	1.6	26
17	A Strategy for Constructing Poreâ€Spaceâ€Partitioned MOFs with High Uptake Capacity for C ₂ Hydrocarbons and CO ₂ . Angewandte Chemie - International Edition, 2020, 59, 19027-19030.	7.2	77
18	Roles of Alkali Metals and Ionic Networks in Directing the Formation of Anionic Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 6668-6676.	1.4	7

#	Article	IF	Citations
19	S-Doped Ni(OH) ₂ nano-electrocatalyst confined in semiconductor zeolite with enhanced oxygen evolution activity. Journal of Materials Chemistry A, 2020, 8, 11255-11260.	5.2	31
20	Pore-Space-Partition-Enabled Exceptional Ethane Uptake and Ethane-Selective Ethane–Ethylene Separation. Journal of the American Chemical Society, 2020, 142, 2222-2227.	6.6	199
21	lsoreticular Three-Dimensional Kagome Metal–Organic Frameworks with Open-Nitrogen-Donor Pillars for Selective Gas Adsorption. Crystal Growth and Design, 2020, 20, 3523-3530.	1.4	15
22	Ultramicroporous Building Units as a Path to Biâ€microporous Metal–Organic Frameworks with High Acetylene Storage and Separation Performance. Angewandte Chemie, 2019, 131, 13724-13729.	1.6	46
23	Ultramicroporous Building Units as a Path to Biâ€microporous Metal–Organic Frameworks with High Acetylene Storage and Separation Performance. Angewandte Chemie - International Edition, 2019, 58, 13590-13595.	7.2	173
24	From MOFâ€₹4â€Zn to Triazolateâ€Directed Nonsymmetric Assembly of Chiral Zn 6 @Zn 6 Clusters. Chemistry - A European Journal, 2019, 25, 10590-10593.	1.7	9
25	Lockâ€andâ€Key and Shapeâ€Memory Effects in an Unconventional Synthetic Path to Magnesium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 11757-11762.	7.2	56
26	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj ET	TQq0 0 0 r 7.2	gBT /Overloc 350
27	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj ET	Qq1 1 0.7 1.6	784314 rgB 47
28	Lockâ€andâ€Key and Shapeâ€Memory Effects in an Unconventional Synthetic Path to Magnesium Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 11883-11888.	1.6	10
29	Zeoliteâ€√ype Metal Oxalate Frameworks. Angewandte Chemie, 2019, 131, 2915-2918.	1.6	4
30	Ligand Charge Separation To Build Highly Stable Quasi-Isomer of MOF-74-Zn. Journal of the American Chemical Society, 2019, 141, 9808-9812.	6.6	49
31	A Tale of Two Trimers from Two Different Worlds: A COFâ€Inspired Synthetic Strategy for Poreâ€Space Partitioning of MOFs. Angewandte Chemie - International Edition, 2019, 58, 6316-6320.	7.2	70
32	A Tale of Two Trimers from Two Different Worlds: A COFâ€Inspired Synthetic Strategy for Poreâ€Space Partitioning of MOFs. Angewandte Chemie, 2019, 131, 6382-6386.	1.6	14
33	Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 4227-4231.	7.2	430
34	Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 4271-4275.	1.6	36
35	Solventâ€Free Synthesis of Zeolitic Imidazolate Frameworks and the Catalytic Properties of Their Carbon Materials. Chemistry - A European Journal, 2019, 25, 16358-16365.	1.7	23
36	Cooperativity by Multi-Metals Confined in Supertetrahedral Sulfide Nanoclusters To Enhance Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2019, 31, 553-559.	3.2	48

#	Article	IF	Citations
37	Zeoliteâ€Type Metal Oxalate Frameworks. Angewandte Chemie - International Edition, 2019, 58, 2889-2892.	7.2	28
38	A Cooperative Pillar–Template Strategy as a Generalized Synthetic Method for Flexible Homochiral Porous Frameworks. Angewandte Chemie, 2018, 130, 3799-3803.	1.6	8
39	A Cooperative Pillar–Template Strategy as a Generalized Synthetic Method for Flexible Homochiral Porous Frameworks. Angewandte Chemie - International Edition, 2018, 57, 3737-3741.	7.2	29
40	Homoâ∈Helical Rod Packing as a Path Toward the Highest Density of Guestâ∈Binding Metal Sites in Metalâ∈"Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 6208-6211.	7.2	35
41	Highly Tunable Heterojunctions from Multimetallic Sulfide Nanoparticles and Silver Nanowires. Angewandte Chemie - International Edition, 2018, 57, 5374-5378.	7.2	57
42	Pushing up the Size Limit of Metal Chalcogenide Supertetrahedral Nanocluster. Journal of the American Chemical Society, 2018, 140, 888-891.	6.6	79
43	Homoâ€Helical Rod Packing as a Path Toward the Highest Density of Guestâ€Binding Metal Sites in Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 6316-6319.	1.6	6
44	Ligand-Controlled Integration of Zn and Tb by Photoactive Terpyridyl-Functionalized Tricarboxylates as Highly Selective and Sensitive Sensors for Nitrofurans. Inorganic Chemistry, 2018, 57, 3833-3839.	1.9	60
45	<i>In situ</i> synthesis of n–n Bi ₂ MoO ₆ & Bi ₂ S ₃ heterojunctions for highly efficient photocatalytic removal of Cr(<scp>vi</scp>). Journal of Materials Chemistry A, 2018, 6, 22580-22589.	5.2	200
46	A new strategy for constructing a disulfide-functionalized ZIF-8 analogue using structure-directing ligand–ligand covalent interaction. Chemical Communications, 2018, 54, 12109-12112.	2.2	31
47	Enabling Homochirality and Hydrothermal Stability in Zn ₄ O-Based Porous Crystals. Journal of the American Chemical Society, 2018, 140, 13566-13569.	6.6	33
48	Chiral Isocamphoric Acid: Founding a Large Family of Homochiral Porous Materials. Angewandte Chemie, 2018, 130, 7219-7223.	1.6	6
49	Chiral Isocamphoric Acid: Founding a Large Family of Homochiral Porous Materials. Angewandte Chemie - International Edition, 2018, 57, 7101-7105.	7.2	35
50	Metal–Organic Frameworks for Separation. Advanced Materials, 2018, 30, e1705189.	11.1	835
51	Charge―and Sizeâ€Complementary Multimetalâ€Induced Morphology and Phase Control in Zeoliteâ€Type Metal Chalcogenides. Chemistry - A European Journal, 2018, 24, 10812-10819.	1.7	10
52	Tunable MoS ₂ /SnO ₂ P–N Heterojunctions for an Efficient Trimethylamine Gas Sensor and 4-Nitrophenol Reduction Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 12375-12384.	3.2	151
53	Highly Tunable Heterojunctions from Multimetallic Sulfide Nanoparticles and Silver Nanowires. Angewandte Chemie, 2018, 130, 5472-5476.	1.6	4
54	Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient CO ₂ Photoreduction. Advanced Materials, 2018, 30, 1704388.	11.1	184

#	Article	IF	CITATIONS
55	Pore Space Partition in Metal–Organic Frameworks. Accounts of Chemical Research, 2017, 50, 407-417.	7.6	423
56	Anionic Lanthanide MOFs as a Platform for Iron-Selective Sensing, Systematic Color Tuning, and Efficient Nanoparticle Catalysis. Inorganic Chemistry, 2017, 56, 1402-1411.	1.9	157
57	Ag-NPs embedded in two novel Zn ₃ /Zn ₅ -cluster-based metal–organic frameworks for catalytic reduction of 2/3/4-nitrophenol. Dalton Transactions, 2017, 46, 2430-2438.	1.6	49
58	Multitopic ligand directed assembly of low-dimensional metal-chalcogenide organic frameworks. Dalton Transactions, 2017, 46, 1481-1486.	1.6	5
59	Porphyrinic coordination lattices with fluoropillars. Journal of Materials Chemistry A, 2017, 5, 21189-21195.	5.2	26
60	Rù¼cktitelbild: Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction (Angew. Chem. 42/2017). Angewandte Chemie, 2017, 129, 13332-13332.	1.6	0
61	A heterometallic sodium–europium-cluster-based metal–organic framework as a versatile and water-stable chemosensor for antibiotics and explosives. Journal of Materials Chemistry C, 2017, 5, 8469-8474.	2.7	168
62	Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 13001-13005.	7.2	334
63	Surfactantâ€Assisted Phaseâ€5elective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 13181-13185.	1.6	58
64	Selective Ion Exchange and Photocatalysis by Zeolite‣ike Semiconducting Chalcogenide. Chemistry - A European Journal, 2017, 23, 11913-11919.	1.7	25
65	Cation-Exchanged Zeolitic Chalcogenides for CO ₂ Adsorption. Inorganic Chemistry, 2017, 56, 14999-15005.	1.9	44
66	Integrating Zeolite-Type Chalcogenide with Titanium Dioxide Nanowires for Enhanced Photoelectrochemical Activity. Langmuir, 2017, 33, 13634-13639.	1.6	18
67	Efficient Gas-Sensing for Formaldehyde with 3D Hierarchical Co ₃ O ₄ Derived from Co ₅ -Based MOF Microcrystals. Inorganic Chemistry, 2017, 56, 14111-14117.	1.9	81
68	Framework Cationization by Preemptive Coordination of Open Metal Sites for Anionâ€Exchange Encapsulation of Nucleotides and Coenzymes. Angewandte Chemie - International Edition, 2016, 55, 2768-2772.	7.2	116
69	Improving Photoluminescence Emission Efficiency of Nanocluster-Based Materials by in Situ Doping Synthetic Strategy. Journal of Physical Chemistry C, 2016, 120, 29390-29396.	1.5	24
70	An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nature Communications, 2016, 7, 13645.	5.8	205
71	Chiral chemistry of metal–camphorate frameworks. Chemical Society Reviews, 2016, 45, 3122-3144.	18.7	229
72	Organization of Lithium Cubane Clusters into Three-Dimensional Porous Frameworks by Self-Penetration and Self-Polymerization. Crystal Growth and Design, 2016, 16, 6531-6536.	1.4	11

#	Article	IF	CITATIONS
73	Hexagonal@Cubic CdS Core@Shell Nanorod Photocatalyst for Highly Active Production of H ₂ with Unprecedented Stability. Advanced Materials, 2016, 28, 8906-8911.	11.1	271
74	A lanthanide complex for metal encapsulations and anion exchanges. Chemical Communications, 2016, 52, 10125-10128.	2,2	45
75	Highly Selective and Rapid Uptake of Radionuclide Cesium Based on Robust Zeolitic Chalcogenide via Stepwise Ion-Exchange Strategy. Chemistry of Materials, 2016, 28, 8774-8780.	3.2	126
76	Multivariable Modular Design of Pore Space Partition. Journal of the American Chemical Society, 2016, 138, 15102-15105.	6.6	132
77	Framework Cationization by Preemptive Coordination of Open Metal Sites for Anionâ€Exchange Encapsulation of Nucleotides and Coenzymes. Angewandte Chemie, 2016, 128, 2818-2822.	1.6	20
78	Advancing Magnesium–Organic Porous Materials through New Magnesium Cluster Chemistry. Crystal Growth and Design, 2016, 16, 1261-1267.	1.4	33
79	Systematic and Dramatic Tuning on Gas Sorption Performance in Heterometallic Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 2524-2527.	6.6	290
80	Highly effective nanosegregation of dual dopants in a micron-sized nanocluster-based semiconductor molecular single crystal for targeting white-light emission. Journal of Materials Chemistry C, 2016, 4, 1645-1650.	2.7	19
81	Cooperative Crystallization of Heterometallic Indium–Chromium Metal–Organic Polyhedra and Their Fast Proton Conductivity. Angewandte Chemie - International Edition, 2015, 54, 7886-7890.	7.2	141
82	Cooperative Crystallization of Heterometallic Indium–Chromium Metal–Organic Polyhedra and Their Fast Proton Conductivity. Angewandte Chemie, 2015, 127, 7997-8001.	1.6	26
83	MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles. Nanoscale, 2015, 7, 10817-10822.	2.8	40
84	Comparative Study of In Situ and Presynthesized X-Pillar Ligand in Self-Assembly of Homochiral Porous Frameworks. Crystal Growth and Design, 2015, 15, 5939-5944.	1.4	17
85	Pore Space Partition by Symmetry-Matching Regulated Ligand Insertion and Dramatic Tuning on Carbon Dioxide Uptake. Journal of the American Chemical Society, 2015, 137, 1396-1399.	6.6	284
86	From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction. Dalton Transactions, 2015, 44, 6748-6754.	1.6	80
87	Heterometalâ€Embedded Organic Conjugate Frameworks from Alternating Monomeric Iron and Cobalt Metalloporphyrins and Their Application in Design of Porous Carbon Catalysts. Advanced Materials, 2015, 27, 3431-3436.	11.1	231
88	Mimicking High-Silica Zeolites: Highly Stable Germanium- and Tin-Rich Zeolite-Type Chalcogenides. Journal of the American Chemical Society, 2015, 137, 6184-6187.	6.6	123
89	Charge-Complementary-Ligands Directed Assembly of a Lithium Dimer into a Three-Dimensional Porous Framework. Crystal Growth and Design, 2015, 15, 2550-2554.	1.4	10
90	Design of Pore Size and Functionality in Pillar-Layered Zn-Triazolate-Dicarboxylate Frameworks and Their High CO ₂ /CH ₄ and C2 Hydrocarbons/CH ₄ Selectivity. Inorganic Chemistry, 2015, 54, 9862-9868.	1.9	82

#	Article	IF	CITATIONS
91	Charge-tunable indium–organic frameworks built from cationic, anionic, and neutral building blocks. Dalton Transactions, 2015, 44, 16671-16674.	1.6	40
92	Polymorphic Graphene-like Cuprous Germanosulfides with a High Cu-to-Ge Ratio and Low Band Gap. Inorganic Chemistry, 2014, 53, 13207-13211.	1.9	12
93	Visibleâ€Lightâ€Driven, Tunable, Photoelectrochemical Performance of a Series of Metalâ€Chelate, Dyeâ€Organized, Crystalline, CdS Nanoclusters. Chemistry - A European Journal, 2014, 20, 8297-8301.	1.7	21
94	Direct Observation of Two Types of Proton Conduction Tunnels Coexisting in a New Porous Indium–Organic Framework. Chemistry of Materials, 2014, 26, 2492-2495.	3.2	107
95	New Lithium Ion Clusters for Construction of Porous MOFs. Crystal Growth and Design, 2014, 14, 897-900.	1.4	38
96	Anion Stripping as a General Method to Create Cationic Porous Framework with Mobile Anions. Journal of the American Chemical Society, 2014, 136, 7579-7582.	6.6	97
97	Efficient oxygen reduction by nanocomposites of heterometallic carbide and nitrogen-enriched carbon derived from the cobalt-encapsulated indium–MOF. Chemical Communications, 2014, 50, 15619-15622.	2.2	89
98	An infinite square lattice of super-supertetrahedral T6-like tin oxyselenide clusters. Chemical Communications, 2014, 50, 4044.	2.2	35
99	Atomically Precise Doping of Monomanganese Ion into Coreless Supertetrahedral Chalcogenide Nanocluster Inducing Unusual Red Shift in Mn ²⁺ Emission. Journal of the American Chemical Society, 2014, 136, 4769-4779.	6.6	150
100	Size-Selective Crystallization of Homochiral Camphorate Metal–Organic Frameworks for Lanthanide Separation. Journal of the American Chemical Society, 2014, 136, 12572-12575.	6.6	138
101	Zeolitic BIF Crystal Directly Producing Noble-Metal Nanoparticles in Its Pores for Catalysis. Scientific Reports, 2014, 4, 3923.	1.6	48
102	Selective anion exchange with nanogated isoreticular positive metal-organic frameworks. Nature Communications, 2013, 4, 2344.	5.8	336
103	Perfect Statistical Symmetrization of a Heterofunctional Ligand Induced by Pseudo-Copper Trimer in an Expanded Matrix of HKUST-1. Crystal Growth and Design, 2013, 13, 5175-5178.	1.4	5
104	Coassembly between the Largest and Smallest Metal Chalcogenide Supertetrahedral Clusters. Inorganic Chemistry, 2013, 52, 2259-2261.	1.9	36
105	Crystalline Inorganic Frameworks with 56-Ring, 64-Ring, and 72-Ring Channels. Science, 2013, 339, 811-813.	6.0	158
106	Entrapment of Metal Clusters in Metal–Organic Framework Channels by Extended Hooks Anchored at Open Metal Sites. Journal of the American Chemical Society, 2013, 135, 10270-10273.	6.6	154
107	Monocopper Doping in Cd-In-S Supertetrahedral Nanocluster via Two-Step Strategy and Enhanced Photoelectric Response. Journal of the American Chemical Society, 2013, 135, 10250-10253.	6.6	117
108	Porous <i>ctn</i> ‶ype Boron Imidazolate Framework for Gas Storage and Separation. Chemistry - A European Journal, 2013, 19, 11527-11530.	1.7	50

#	Article	IF	Citations
109	A twelve-connected porous framework built from rare linear cadmium tricarboxylate pentamer. Dalton Transactions, 2012, 41, 3620.	1.6	20
110	Lithium cubane clusters as tetrahedral, square planar, and linear nodes for supramolecular assemblies. Dalton Transactions, 2012, 41, 3902-3905.	1.6	13
111	Induction of trimeric [Mg3(OH)(CO2)6] in a porous framework by a desymmetrized tritopic ligand. Dalton Transactions, 2012, 41, 2866.	1.6	45
112	Single-Walled Polytetrazolate Metal–Organic Channels with High Density of Open Nitrogen-Donor Sites and Gas Uptake. Journal of the American Chemical Society, 2012, 134, 784-787.	6.6	169
113	Luminescent MTN -Type Cluster–Organic Framework with 2.6 nm Cages. Journal of the American Chemical Society, 2012, 134, 17881-17884.	6.6	239
114	Zeolitic Boron Imidazolate Frameworks with 4â€Connected Octahedral Metal Centers. Chemistry - A European Journal, 2012, 18, 11876-11879.	1.7	38
115	Twoâ€Step Synthesis of a Novel Cd ₁₇ Sulfide Cluster through Ionic Clusters. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 2470-2472.	0.6	6
116	Generalized Synthesis of Zeolite-Type Metal–Organic Frameworks Encapsulating Immobilized Transition-Metal Clusters. Journal of the American Chemical Society, 2012, 134, 11936-11939.	6.6	79
117	Mimicking Zeolite to Its Core: Porous Sodalite Cages as Hangers for Pendant Trimeric M ₃ (OH) Clusters (M = Mg, Mn, Co, Ni, Cd). Journal of the American Chemical Society, 2012, 134, 1934-1937.	6.6	126
118	High CO ₂ and H ₂ Uptake in an Anionic Porous Framework with Amino-Decorated Polyhedral Cages. Chemistry of Materials, 2012, 24, 2624-2626.	3.2	109
119	Development of Composite Inorganic Building Blocks for MOFs. Journal of the American Chemical Society, 2012, 134, 4517-4520.	6.6	222
120	Superbase Route to Supertetrahedral Chalcogenide Clusters. Journal of the American Chemical Society, 2012, 134, 3619-3622.	6.6	84
121	Two Zeoliteâ€Type Frameworks in One Metal–Organic Framework with Zn ₂₄ @Zn ₁₀₄ Cubeâ€inâ€Sodalite Architecture. Angewandte Chemie - International Edition, 2012, 51, 8538-8541.	7.2	62
122	Assembly of super-supertetrahedral metal–organic clusters into a hierarchical porous cubic framework. Chemical Communications, 2012, 48, 7498.	2.2	37
123	Induction in urothermal synthesis of chiral porous materials from achiral precursors. Chemical Communications, 2011, 47, 4950.	2.2	80
124	A novel sandwich-type polyoxometalate compound with visible-light photocatalytic H2 evolution activity. Chemical Communications, 2011, 47, 3918.	2.2	81
125	A zeolitic porous lithium–organic framework constructed from cubane clusters. Chemical Communications, 2011, 47, 5536-5538.	2.2	65
126	A Large Indium Sulfide Supertetrahedral Cluster Built from Integration of ZnS-like Tetrahedral Shell with NaCl-like Octahedral Core. Journal of the American Chemical Society, 2011, 133, 15886-15889.	6.6	40

#	Article	IF	CITATIONS
127	Phase Selection and Site-Selective Distribution by Tin and Sulfur in Supertetrahedral Zinc Gallium Selenides. Journal of the American Chemical Society, 2011, 133, 9616-9625.	6.6	57
128	A chiral tetragonal magnesium-carboxylate framework with nanotubular channels. Chemical Communications, 2011, 47, 11852.	2.2	117
129	A Nine-Connected Mixed-Ligand Nickel-Organic Framework and Its Gas Sorption Properties. Crystal Growth and Design, 2011, 11, 3713-3716.	1.4	54
130	Interrupted Zeolite LTA and ATN-Type Boron Imidazolate Frameworks. Journal of the American Chemical Society, 2011, 133, 11884-11887.	6.6	134
131	Synthesis and Photocatalytic Properties of a New Heteropolyoxoniobate Compound: K ₁₀ [Nb ₂ O ₂ O(sub>2O) ₂][SiNb ₁₂ O _{O_O}}}	b &40 <td>bа]∲812Н<s< td=""></s<></td>	bа]∲ 812Н <s< td=""></s<>
132	Synthesis, characterization, and cyclometalation studies of benzo[1,2-h: 5,4-h′]diquinolines with palladium and platinum. Journal of Organometallic Chemistry, 2011, 696, 3992-3997.	0.8	5
133	A mixed ligand route for the construction of tetrahedrally coordinated porous lithium frameworks. Dalton Transactions, 2011, 40, 8072.	1.6	20
134	Threeâ€Dimensional Covalent Coâ€Assembly between Inorganic Supertetrahedral Clusters and Imidazolates. Angewandte Chemie - International Edition, 2011, 50, 2536-2539.	7.2	104
135	Cooperative Assembly of Threeâ€Ringâ€Based Zeoliteâ€Type Metal–Organic Frameworks and Johnsonâ€Type Dodecahedra. Angewandte Chemie - International Edition, 2011, 50, 1849-1852.	7.2	128
136	Porous Indium–Organic Frameworks and Systematization of Structural Building Blocks. Angewandte Chemie - International Edition, 2011, 50, 8858-8862.	7.2	137
137	Multicomponent Selfâ€Assembly of a Nested Co ₂₄ @Co ₄₈ Metal–Organic Polyhedral Framework. Angewandte Chemie - International Edition, 2011, 50, 8034-8037.	7.2	105
138	Hydrogen-bonded boron imidazolate frameworks. Dalton Transactions, 2010, 39, 1702-1704.	1.6	14
139	Porous Lithium Imidazolate Frameworks Constructed with Chargeâ€Complementary Ligands. Chemistry - A European Journal, 2010, 16, 13035-13040.	1.7	66
140	A Tale of Three Carboxylates: Cooperative Asymmetric Crystallization of a Threeâ€Dimensional Microporous Framework from Achiral Precursors. Angewandte Chemie - International Edition, 2010, 49, 1267-1270.	7.2	172
141	Porous Metal Carboxylate Boron Imidazolate Frameworks. Angewandte Chemie - International Edition, 2010, 49, 5362-5366.	7.2	101
142	Urothermal Synthesis of Crystalline Porous Materials. Angewandte Chemie - International Edition, 2010, 49, 8876-8879.	7.2	179
143	Two new layered bimetallic sulfides: Solvothermal synthesis, crystal structure, optical and magnetic properties. Microporous and Mesoporous Materials, 2010, 132, 328-334.	2.2	23
144	Induction of chiral porous solids containing only achiral building blocks. Nature Chemistry, 2010, 2, 353-361.	6.6	522

#	Article	IF	Citations
145	Zinc(II)-boron(III)-imidazolate framework (ZBIF) with unusual pentagonal channels prepared from deep eutectic solvent. Dalton Transactions, 2010, 39, 697-699.	1.6	50
146	Largest Molecular Clusters in the Supertetrahedral T <i>n</i> Series. Journal of the American Chemical Society, 2010, 132, 10823-10831.	6.6	102
147	Three-Dimensional Photoluminescent Frameworks Constructed from Size-Tunable Cul Clusters. Crystal Growth and Design, 2010, 10, 2047-2049.	1.4	72
148	Formation of Aminoxy and Oxo Complexes from the Reaction of Nb(NMe ₂) ₅ with O ₂ and the Crystal Structure of Nb(NEt ₂) ₅ . Inorganic Chemistry, 2010, 49, 4017-4022.	1.9	21
149	Assembly of Supertetrahedral T ₅ Copperâ^'Indium Sulfide Clusters into a Super-Supertetrahedron of Infinite Order. Journal of the American Chemical Society, 2010, 132, 3283-3285.	6.6	99
150	Pore Space Partition and Charge Separation in Cage-within-Cage Indiumâ^'Organic Frameworks with High CO ₂ Uptake. Journal of the American Chemical Society, 2010, 132, 17062-17064.	6.6	339
151	The first anionic four-connected boron imidazolate framework. Dalton Transactions, 2010, 39, 2487.	1.6	16
152	Zeolitic Boron Imidazolate Frameworks. Angewandte Chemie - International Edition, 2009, 48, 2542-2545.	7.2	224
153	Versatile Structureâ€Directing Roles of Deepâ€Eutectic Solvents and Their Implication in the Generation of Porosity and Open Metal Sites for Gas Storage. Angewandte Chemie - International Edition, 2009, 48, 3486-3490.	7.2	227
154	Nucleotideâ€Catalyzed Conversion of Racemic Zeoliteâ€Type Zincophosphate into Enantioenriched Crystals. Angewandte Chemie - International Edition, 2009, 48, 6049-6051.	7.2	54
155	Synthetic Control of Selenide Supertetrahedral Clusters and Threeâ€Dimensional Coâ€assembly by Chargeâ€Complementary Metal Cations. Angewandte Chemie - International Edition, 2009, 48, 7204-7207.	7.2	68
156	Variable Lithium Coordination Modes in Two- and Three-Dimensional Lithium Boron Imidazolate Frameworks. Chemistry of Materials, 2009, 21, 3830-3837.	3.2	54
157	Zeolite RHO-Type Net with the Lightest Elements. Journal of the American Chemical Society, 2009, 131, 6111-6113.	6.6	161
158	Multiroute Synthesis of Porous Anionic Frameworks and Size-Tunable Extraframework Organic Cation-Controlled Gas Sorption Properties. Journal of the American Chemical Society, 2009, 131, 16027-16029.	6.6	247
159	Absolute helicity induction in three-dimensional homochiral frameworks. Chemical Communications, 2009, , 206-208.	2.2	96
160	Spontaneous Resolution of Racemic Camphorates in the Formation of Three-Dimensional Metalâ^'Organic Frameworks. Inorganic Chemistry, 2009, 48, 6356-6358.	1.9	47
161	A New Zeolitic Topology with Sixteenâ€Membered Ring and Multidimensional Large Pore Channels. Chemistry - A European Journal, 2008, 14, 7771-7773.	1.7	76
162	A Rare (3,4)â€Connected Chalcogenide Superlattice and Its Photoelectric Effect. Angewandte Chemie - International Edition, 2008, 47, 113-116.	7.2	114

#	Article	IF	Citations
163	Multiple Functions of Ionic Liquids in the Synthesis of Threeâ€Dimensional Lowâ€Connectivity Homochiral and Achiral Frameworks. Angewandte Chemie - International Edition, 2008, 47, 5434-5437.	7.2	187
164	Integrated Molecular Chirality, Absolute Helicity, and Intrinsic Chiral Topology in Three-Dimensional Open-Framework Materials. Journal of the American Chemical Society, 2008, 130, 17246-17247.	6.6	196
165	Homochiral Crystallization of Microporous Framework Materials from Achiral Precursors by Chiral Catalysis. Journal of the American Chemical Society, 2008, 130, 12882-12883.	6.6	319
166	New Zeolitic Imidazolate Frameworks: From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary Ligands. Chemistry of Materials, 2008, 20, 7377-7382.	3.2	102
167	Solvothermal Conversion of Discrete Cubic Cadmium Thiolate Cluster into Supertetrahedral Cluster Decorating Quartz-Type Chiral Superlattice. Chemistry of Materials, 2008, 20, 3239-3241.	3.2	38
168	Ionothermal Synthesis of Homochiral Framework with Acetate-Pillared Cobaltâ^'Camphorate Architecture. Inorganic Chemistry, 2008, 47, 5567-5569.	1.9	85
169	Temperature dependent charge distribution in three-dimensional homochiral cadmium camphorates. Chemical Communications, 2008, , 444-446.	2.2	94
170	Three-Dimensional Open Framework Built from Cuâ^'S Icosahedral Clusters and Its Photocatalytic Property. Journal of the American Chemical Society, 2008, 130, 15238-15239.	6.6	120
171	A new enantiopure unsaturated dicarboxylate as a 4-connected unit in a flexible homochiral PtS-type framework. Chemical Communications, 2008, , 1756.	2.2	24
172	Ion Pair Charge-Transfer Salts Based on Metal Chalcogenide Clusters and Methyl Viologen Cations. Chemistry of Materials, 2008, 20, 4170-4172.	3.2	85
173	Three-Dimensional Homochiral Transition-Metal Camphorate Architectures Directed by a Flexible Auxiliary Ligand. Inorganic Chemistry, 2008, 47, 3495-3497.	1.9	106
174	Organization of Tetrahedral Chalcogenide Clusters Using a Tetrahedral Quadridentate Linker. Inorganic Chemistry, 2008, 47, 9724-9726.	1.9	96
175	In Situ Synthesis of Tetradentate Dye for Construction of Three-Dimensional Homochiral Phosphor. Chemistry of Materials, 2008, 20, 5457-5459.	3.2	63
176	Cooperative Self-Assembly of Chiral <scp>l</scp> -Malate and Achiral Succinate in the Formation of a Three-Dimensional Homochiral Framework. Inorganic Chemistry, 2008, 47, 8607-8609.	1.9	29
177	Comparative Study of Homochiral and Racemic Chiral Metal-Organic Frameworks Built from Camphoric Acid. Chemistry of Materials, 2007, 19, 5083-5089.	3.2	166
178	Manganese and Magnesium Homochiral Materials:  Decoration of Honeycomb Channels with Homochiral Chains. Journal of the American Chemical Society, 2007, 129, 14168-14169.	6.6	180
179	Chiral Semiconductor Frameworks from Cadmium Sulfide Clusters. Journal of the American Chemical Society, 2007, 129, 8412-8413.	6.6	107
180	Homochiral Coordination Polymer with Infinite Double-Stranded Helices. Inorganic Chemistry, 2007, 46, 1511-1513.	1.9	113

#	Article	IF	Citations
181	Amine-Controlled Assembly of Metalâ 'Sulfite Architecture from 1D Chains to 3D Framework. Inorganic Chemistry, 2007, 46, 6283-6290.	1.9	33
182	Metal-Complex-Decorated Homochiral Heterobimetallic Telluride Single-Stranded Helix. Inorganic Chemistry, 2007, 46, 7262-7264.	1.9	81
183	Cadmiumâ^'Porphyrin Coordination Networks: Rich Coordination Modes and Three-Dimensional Four-Connected CdSO4and (3,5)-Connected hms Nets. Crystal Growth and Design, 2007, 7, 2576-2581.	1.4	54
184	Chiralization of Diamond Nets: Stretchable Helices and Chiral and Achiral Nets with Nearly Identical Unit Cells. Angewandte Chemie - International Edition, 2007, 46, 6115-6118.	7.2	135
185	Organic Cation and Chiral Anion Templated 3D Homochiral Openâ€Framework Materials with Unusual Squareâ€Planar {M ₄ (OH)} Units. Angewandte Chemie - International Edition, 2007, 46, 8388-8391.	7.2	143
186	Zero- and Two-Dimensional Organization of Tetrahedral Cadmium Chalcogenide Clusters with Bifunctional Covalent Linkers. Chemistry of Materials, 2006, 18, 4307-4311.	3.2	67
187	Histidine-Controlled Two-Dimensional Assembly of Zinc Phosphite Four-Ring Units. Chemistry of Materials, 2006, 18, 1857-1860.	3.2	96
188	Solvothermal in Situ Ligand Synthesis through Disulfide Cleavage:Â 3D (3,4)-Connected and 2D Square-Grid-Type Coordination Polymers. Inorganic Chemistry, 2006, 45, 5736-5738.	1.9	135
189	Metal-Chelate Dye-Controlled Organization of Cd32S14(SPh)404-Nanoclusters into Three-Dimensional Molecular and Covalent Open Architecture. Journal of the American Chemical Society, 2006, 128, 4528-4529.	6.6	78
190	Two-Dimensional Indium Sulfide Framework Constructed from Pentasupertetrahedral P1 and Supertetrahedral T2 Clusters. Inorganic Chemistry, 2006, 45, 6684-6687.	1.9	64
191	Sodium Zinc Hydroxide Sulfite with a Novel Zn3OH Geometry. Inorganic Chemistry, 2006, 45, 10410-10412.	1.9	9
192	(3,4)-Connected Zincophosphites as Structural Analogues of Zinc Hydrogen Phosphate. Inorganic Chemistry, 2006, 45, 4654-4660.	1.9	69
193	Metalâ^'Organic Frameworks from Zinc Sulfite Clusters, Chains, and Sheets:Â 4-Connected, (3,4)-Connected 3-D Frameworks and 2-D Arrays of Catenane-Like Interlocking Rings. Inorganic Chemistry, 2006, 45, 10722-10727.	1.9	47
194	Open-Framework Chalcogenides as Visible-Light Photocatalysts for Hydrogen Generation from Water. Angewandte Chemie - International Edition, 2005, 44, 5299-5303.	7.2	248
195	Na5(In4S) (InS4)3×6H2O, a Zeolite-Like Structure with Unusual SIn4 Tetrahedra ChemInform, 2005, 36, no.	0.1	0
196	The Interface Chemistry Between Chalcogenide Clusters and Open Framework Chalcogenides. ChemInform, 2005, 36, no.	0.1	0
197	Two-Dimensional Organization of [ZnGe3S9(H2O)]4- Supertetrahedral Clusters Templated by a Metal Complex ChemInform, 2005, 36, no.	0.1	0
198	The Interface Chemistry between Chalcogenide Clusters and Open Framework Chalcogenides. Accounts of Chemical Research, 2005, 38, 293-303.	7.6	541

#	Article	IF	Citations
199	Two-dimensional organization of [ZnGe3S9(H2O)]4– supertetrahedral clusters templated by a metal complex. Chemical Communications, 2005, , 2805.	2.2	53
200	Chromium(III) Complexes for Photochemical Nitric Oxide Generation from Coordinated Nitrite:Â Synthesis and Photochemistry of Macrocyclic Complexes with Pendant Chromophores,trans-[Cr(L)(ONO)2]BF4. Inorganic Chemistry, 2005, 44, 4157-4165.	1.9	71
201	Ruthenium Carbene Complexes Featuring a Tridentate Pincer-type Ligand. Organometallics, 2005, 24, 4289-4297.	1.1	34
202	Synthesis and Luminescence Properties of Cr(III) Complexes with Cyclam-Type Ligands Having Pendant Chromophores,trans-[Cr(L)Cl2]Cl1. Inorganic Chemistry, 2005, 44, 4166-4174.	1.9	32
203	One-dimensional coordination polymers containing penta-supertetrahedral sulfide clusters linked by dipyridyl ligands. Chemical Communications, 2005, , 4916.	2.2	61
204	Na5(In4S)(InS4)3·6H2O, a Zeolite-like Structure with Unusual SIn4Tetrahedra. Journal of the American Chemical Society, 2005, 127, 5286-5287.	6.6	39
205	Crystalline Superlattices from Single-Sized Quantum Dots. Journal of the American Chemical Society, 2005, 127, 11963-11965.	6.6	105
206	One-Dimensional Assembly of Chalcogenide Nanoclusters with Bifunctional Covalent Linkers. Journal of the American Chemical Society, 2005, 127, 14990-14991.	6.6	94
207	Three-Dimensional Frameworks of Gallium Selenide Supertetrahedral Clusters. Angewandte Chemie - International Edition, 2004, 43, 1502-1505.	7.2	65
208	Pentasupertetrahedral Clusters as Building Blocks for a Three-Dimensional Sulfide Superlattice. Angewandte Chemie - International Edition, 2004, 43, 4753-4755.	7.2	73
209	Synthetic Design of Crystalline Inorganic Chalcogenides Exhibiting Fast-Ion Conductivity ChemInform, 2004, 35, no.	0.1	0
210	Pentasupertetrahedral Clusters as Building Blocks for a Three-Dimensional Sulfide Superlattice ChemInform, 2004, 35, no.	0.1	0
211	Tetrahedral Chalcogenide Clusters and Open Frameworks. Chemistry - A European Journal, 2004, 10, 3356-3362.	1.7	235
212	Ring Closure of 1,4-Pentadiene to Cyclopentene by a Zwitterionic Nickel Catalyst. Organometallics, 2004, 23, 4174-4177.	1.1	6
213	Pushing Up the Size Limit of Chalcogenide Supertetrahedral Clusters: Two- and Three-Dimensional Photoluminescent Open Frameworks from (Cu5In30S54)13- Clusters ChemInform, 2003, 34, no.	0.1	0
214	The Boratacyclooctatetraene Ligand: An Isoelectronic Trianionic Analogue of the Cyclooctatetraene Dianion. Angewandte Chemie - International Edition, 2003, 42, 4510-4514.	7.2	17
215	Boron trifluoride activation of ethylene oligomerization and polymerization catalysts. Inorganica Chimica Acta, 2003, 345, 95-102.	1.2	17
216	Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity. Nature, 2003, 426, 428-432.	13.7	399

#	Article	IF	CITATIONS
217	Synthesis and Photophysical Properties of New Chromium(III) Complexes of N-Derivatized 1,4,8,11-Tetraazacyclotetradecane Ligands cis- $[Cr(1,8-R2cyclam)Cl2]Cl$, Where R Is a Pendant Chromophore. Exclusive Formation of the cis Isomer. Inorganic Chemistry, 2003, 42, 4171-4178.	1.9	24
218	Nonaqueous Synthesis and Selective Crystallization of Gallium Sulfide Clusters into Three-Dimensional Photoluminescent Superlattices. Journal of the American Chemical Society, 2003, 125, 1138-1139.	6.6	138
219	Templated Assembly of Sulfide Nanoclusters into Cubic-C3N4 Type Framework. Journal of the American Chemical Society, 2003, 125, 6024-6025.	6.6	88
220	CRYSTALLINE MICROPOROUS AND OPEN FRAMEWORK MATERIALS. , 2003, , 1-37.		13
221	Modeling the Catalytic Site of Vanadium Bromoperoxidase:Â Synthesis and Structural Characterization of Intramolecularly H-bonded Vanadium(V) Oxoperoxo Complexes, [VO(O2)(NH2pyg2)]K and [VO(O2)(BrNH2pyg2)]K. Inorganic Chemistry, 2002, 41, 161-163.	1.9	70
222	α-Iminoenamido Ligands:  A Novel Structure for Transition-Metal Activation. Organometallics, 2002, 21, 3082-3084.	1.1	75
223	Nanocluster with One Missing Core Atom:  A Three-Dimensional Hybrid Superlattice Built from Dual-Sized Supertetrahedral Clusters. Journal of the American Chemical Society, 2002, 124, 10268-10269.	6.6	106
224	Pushing Up the Size Limit of Chalcogenide Supertetrahedral Clusters:Â Two- and Three-Dimensional Photoluminescent Open Frameworks from (Cu5In30S54)13-Clusters. Journal of the American Chemical Society, 2002, 124, 12646-12647.	6.6	137
225	Self-Assembly of Novel Dye Molecules and [Cd8(SPh)12]4+Cubic Clusters into Three-Dimensional Photoluminescent Superlattice. Journal of the American Chemical Society, 2002, 124, 9688-9689.	6.6	157
226	Photochemical Nitric Oxide Precursors:Â Synthesis, Photochemistry, and Ligand Substitution Kinetics of Ruthenium Salen Nitrosyl and Ruthenium Salophen Nitrosyl Complexes1. Inorganic Chemistry, 2002, 41, 3728-3739.	1.9	146
227	Microporous and Photoluminescent Chalcogenide Zeolite Analogs. Science, 2002, 298, 2366-2369.	6.0	410
228	Indium selenide superlattices from (In10Se18)6– supertetrahedral clusters. Chemical Communications, 2002, , 1344-1345.	2.2	51
229	Cluster and Non-Cluster Based Open Framework Indium Chalcogenides. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	0
230	A 3D Openâ€"Framework Indium Telluride and Its Selenide and Sulfide Analogues We thank UC Riverside, UC Energy Institute, and the donors of The Petroleum Research Fund (administered by the ACS) for funding Angewandte Chemie, 2002, 114, 2039.	1.6	13
231	A 3D Open–Framework Indium Telluride and Its Selenide and Sulfide Analogues We thank UC Riverside, UC Energy Institute, and the donors of The Petroleum Research Fund (administered by the ACS) for funding Angewandte Chemie - International Edition, 2002, 41, 1959.	7.2	65
232	Pyridinecarboxamidatoâ^'Nickel(II) Complexes. Organometallics, 2001, 20, 5425-5431.	1.1	100
233	Three-Dimensional Superlattices Built from (M4In16S33)10-(M = Mn, Co, Zn, Cd) Supertetrahedral Clusters. Journal of the American Chemical Society, 2001, 123, 11506-11507.	6.6	118
234	Hydrothermal syntheses and structures of three one-dimensional heteropolytungstates formed by Dawson or Keggin cluster units. Dalton Transactions RSC, 2001, , 2009-2014.	2.3	162

#	Article	IF	Citations
235	Synthesis, characterization and C–H activation reactivity of bis(ethylene) boratabenzene rhodium complexes. Chemical Communications, 2001, , 619-620.	2.2	22
236	Hydrothermal Synthesis of New Pure Beryllophosphate Molecular Sieve Phases from Concentrated Amines. Chemistry of Materials, 2001, 13, 2042-2048.	3.2	42
237	Arsenate Zeolite Analogues with 11 Topological Types. Journal of the American Chemical Society, 2001, 123, 8608-8609.	6.6	68
238	α-Iminocarboxamidatoâ^'Nickel(II) Ethylene Polymerization Catalysts. Journal of the American Chemical Society, 2001, 123, 5352-5353.	6.6	163
239	The synthesis of the ligand 5-bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine-1,10-phenanthroline and of its ruthenium(II) and rhenium(I) complexes. Binuclear species with Cu(I) and some photophysical propertiesâ€. Dalton Transactions RSC, 2001, , 1813-1819.	2.3	30
240	Synthesis and single crystal structure of an AFX-type magnesium aluminophosphate. Microporous and Mesoporous Materials, 2001, 50, 145-149.	2.2	9
241	Cobalt Borate Phosphate, Co3[BPO7], Synthesis and Characterization. Journal of Solid State Chemistry, 2001, 156, 281-285.	1.4	24
242	Transition Metal Complexes with the Proton Sponge 4,9-Dichloroquino[7,8-h]quinoline: Highly Twisted Aromatic Systems and an Extreme "Out-of-Plane―Position of the Coordinated Transition Metal Atom. Angewandte Chemie - International Edition, 2001, 40, 3182-3184.	7.2	17
243	Hostâ^'Guest Symmetry and Charge Matching in Two Germanates with Intersecting Three-Dimensional Channels. Chemistry of Materials, 2000, 12, 1505-1507.	3.2	61
244	<title>Periodic mesoporous silica monoliths templated by liquid crystals in complex systems</title> ., 2000, , .		0
245	Gallium Antimonide-Doped Germanium Clathrate—A p-Type Thermoelectric Cage Structure. Journal of Solid State Chemistry, 2000, 151, 61-64.	1.4	40
246	The synthesis, characterization and structures of the chromium(III) dinitrito complexes: trans-[Cr(L)(ONO)2]+ (L=1,4,8,11-tetraazacyclotetradecane or) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 302 Td (5,7 944-950.	7,7,12,14,1 1:2	.4-hexameth
247	Synthesis and single-crystal structure of Cs3Zn4O(AsO4)3·4H2O, an open-framework zinc arsenate. Microporous and Mesoporous Materials, 2000, 39, 359-365.	2.2	22
248	Synthesis, Characterization, and Ethylene Oligomerization Action of [(C6H5)2PC6H4C(O-B(C6F5)3)O-κ2P,O]Ni(η3-CH2C6H5). Journal of the American Chemical Society, 2000, 122, 12379-12380.	6.6	131
249	Solvent- and Vapor-Induced Isomerization between the Luminescent Solids [Cul(4-pic)]4and [Cul(4-pic)]â^ž(pic = methylpyridine). The Structural Basis for the Observed Luminescence Vapochromism. Chemistry of Materials, 2000, 12, 3385-3391.	3.2	274
250	An Open-Framework Material with Dangling Organic Functional Groups in 24-Ring Channels. Journal of the American Chemical Society, 2000, 122, 11563-11564.	6.6	181
251	Packing Modes of Distyrylbenzene Derivatives. Chemistry of Materials, 2000, 12, 1422-1430.	3.2	48
252	Fe(H2O)2BP2O8·H2O, a First Zeotype Ferriborophosphate with Chiral Tetrahedral Framework Topology. Chemistry of Materials, 2000, 12, 3243-3245.	3.2	80

#	Article	IF	CITATIONS
253	First Open-Framework Zinc Germanates by a Molecular Templating Route. Chemistry of Materials, 2000, 12, 1811-1813.	3.2	45
254	Control of Structural Ordering in Crystalline Lamellar Aluminophosphates with Periodicity from 51 to 62 \tilde{A} Inorganic Chemistry, 2000, 39, 2-3.	1.9	52
255	Preferential Cocrystallization among Distyrylbenzene Derivatives. Chemistry of Materials, 2000, 12, 2311-2318.	3.2	39
256	Monolithic Mesoporous Silica Templated by Microemulsion Liquid Crystals. Journal of the American Chemical Society, 2000, 122, 994-995.	6.6	212
257	Boratabenzene Complexes of Cr(III). Journal of the American Chemical Society, 2000, 122, 730-731.	6.6	62
258	Boratastilbene:Â Synthesis, Structural Characterization, and Photophysics. Journal of the American Chemical Society, 2000, 122, 3969-3970.	6.6	44
259	Synthesis of Buteneâ^'Ethylene and Hexeneâ^'Buteneâ^'Ethylene Copolymers from Ethylene via Tandem Action of Well-Defined Homogeneous Catalysts. Journal of the American Chemical Society, 2000, 122, 1830-1831.	6.6	156
260	Synthesis, Characterization, and Reactivity of Chromium Boratabenzene Complexes. Organometallics, 2000, 19, 3948-3956.	1.1	53
261	Control of Pore Sizes in Mesoporous Silica Templated by Liquid Crystals in Block Copolymerâ°'Cosurfactantâ°'Water Systems. Langmuir, 2000, 16, 5304-5310.	1.6	179
262	Reactions of α-amino acid-N-carboxyanhydrides (NCAs) with organometallic palladium(0) and platinum(0) compounds: structure of a metallated NCA product and its role in polypeptide synthesis. Journal of Organometallic Chemistry, 1999, 589, 111-114.	0.8	18
263	Tetrahedral Networks Containing Beryllium: Syntheses and Structures of Be3(PO4)2 · 2H2O and Be(HAsO4) · H2O. Journal of Solid State Chemistry, 1999, 146, 394-398.	1.4	7
264	Transformation of 4-Connected Zeolite Topologies into a Mixed 4- and 6-Connected 3-Dimensional Open Framework. Chemistry of Materials, 1999, 11, 3025-3027.	3.2	26
265	The Synthesis, X-ray Crystal Structure, and Molecular Structure of Rhenium Tetracarbonylbromidetrimethylamineisocyanoborane. Inorganic Chemistry, 1999, 38, 1024-1027.	1.9	3
266	Isolation of Germanate Sheets with Three-Membered Rings:Â A Possible Precursor to Three-Dimensional Zeolite-Type Germanates. Chemistry of Materials, 1999, 11, 3423-3424.	3.2	38
267	Synthesis and organization of zeolite-like materials with three-dimensional helical pores. Nature, 1998, 395, 154-157.	13.7	279
268	Two Ethylenediamine-Templated Zeolite-Type Structures in Zinc Arsenate and Cobalt Phosphate Systems. Journal of Solid State Chemistry, 1998, 136, 210-215.	1.4	60
269	A New Polymorph of Lithium Zinc Phosphate with the Cristobalite-Type Framework Topology. Journal of Solid State Chemistry, 1998, 138, 126-130.	1.4	18
270	Template control of framework topology and charge in new phosphate- and arsenate-based sodalite analogs. Microporous and Mesoporous Materials, 1998, 20, 371-379.	2.2	34

#	Article	IF	Citations
271	Amine-directed syntheses and crystal structures of phosphate-based zeolite analogs. Microporous and Mesoporous Materials, 1998, 23, 221-229.	2.2	35
272	Amine-templated syntheses and crystal structures of zeolite rho analogs. Microporous and Mesoporous Materials, 1998, 23, 315-322.	2.2	19
273	Synthesis and crystal structure of feldspar analogs in beryllosilicate and aluminum–cobalt phosphate systems. Microporous and Mesoporous Materials, 1998, 23, 323-330.	2.2	6
274	Syntheses and crystal structures of two zeolite related structures with novel framework topologies. Microporous and Mesoporous Materials, 1998, 25, 109-117.	2.2	7
275	Hydrothermal synthesis and low temperature crystal structure of an ammonium beryllophosphate with the merlinoite topology. Microporous and Mesoporous Materials, 1998, 26, 61-66.	2.2	32
276	Cobalt Phosphate Based Zeolite Structures with the Edingtonite Framework Topology. Chemistry of Materials, 1998, 10, 2546-2551.	3.2	23
277	Novel Germanate Zeolite Structures with 3-Rings. Journal of the American Chemical Society, 1998, 120, 11204-11205.	6.6	98
278	Hydrothermal Synthesis and Structural Characterization of Zeolite-like Structures Based on Gallium and Aluminum Germanates. Journal of the American Chemical Society, 1998, 120, 13389-13397.	6.6	186
279	Novel lamella hydrated sodium zinc arsenate with 4-connected two-dimensional nets. Chemical Communications, 1997, , 2271.	2.2	15
280	Synthesis and characterization of mesostructured aluminophosphates using the fluoride route. Chemical Communications, 1997, , 949-950.	2.2	69
281	Synthesis and Structural Characterization of Several Ruthenium Porphyrin Nitrosyl Complexes. Inorganic Chemistry, 1997, 36, 4838-4848.	1.9	120
282	Syntheses and Characterizations of Chiral Tetrahedral Cobalt Phosphates with Zeolite ABW and Related Frameworks. Journal of the American Chemical Society, 1997, 119, 2497-2504.	6.6	185
283	Large-Cage Zeolite Structures with Multidimensional 12-Ring Channels. Science, 1997, 278, 2080-2085.	6.0	308
284	Structural and chemical studies of zeolite ABW type phases: Syntheses and characterizations of an ammonium zincophosphate and an ammonium beryllophosphate zeolite ABW structure. Zeolites, 1997, 19, 200-208.	0.9	49
285	Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate. Nature, 1997, 388, 735-741.	13.7	555
286	Synthesis, Crystal Structure, and Magnetic Properties of a New Polymorphic Sodium Cobalt Phosphate with Trigonal Bipyramidal Co2+and a Tunnel Structure. Journal of Solid State Chemistry, 1997, 129, 328-333.	1.4	56
287	Synthesis and Characterizations of a Polymorphic Sodium Cobalt Phosphate with Edge-Sharing Co2+Octahedral Chains. Journal of Solid State Chemistry, 1997, 131, 160-166.	1.4	46
288	A Lamellar Hydrated Barium Cobalt Phosphate with a Two-Dimensional Array of Co–O–Co Network: Ba(CoPO4)2·H2O. Journal of Solid State Chemistry, 1997, 131, 387-393.	1.4	31

#	Article	IF	CITATIONS
289	Na2Zn3(CO3)4·3H2O, a Microporous Sodium Zincocarbonate with a Diamond-Type Tetrahedral-Triangular Topology. Journal of the American Chemical Society, 1996, 118, 3039-3040.	6.6	55
290	Synthesis, Characterization and Tunable Electronic/Optical Properties of Ilâ^'VI Semiconductor Species Included in the Sodalite Structure. Chemistry of Materials, 1996, 8, 1930-1943.	3.2	27
291	Synthesis and Characterization of a New Family of Thermally Stable Open-Framework Zincophosphate/Arsenate Phases: M3Zn4O(XO4)3·nH2O (M = Na, K, Rb, Li,; X = P, As;n= $\hat{a}^{-1}/43.5\hat{a}^{-2}$ 6). Crystal Structures of Rb3Zn4O(PO4)3·3.5H2O, K3Zn4O(AsO4)3·4H2O, and Na3Zn4O(PO4)3·6H2O. Chemistry of Materials, 1996, 8, 691-700.	3.2	87
292	Two Three-Dimensional Tetrahedral Framework Zinc Phosphates with Infinite Zn–O–Zn Chains: H[Zn4(PO4)3]H2O and [Zn4(H2O)(PO4)3] NH(CH3)3. Journal of Solid State Chemistry, 1996, 125, 243-248.	1.4	58
293	Tetramethylammonium Lithium Zinc Cyanide, [N(CH3)4]LiZn(CN)4. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 14-16.	0.4	10
294	Design und Synthese von Materialien mit offenen Ger $\tilde{A}^{1}/4$ sten: ein unterbrochener und ein aufgeweiteter Sodalith. Angewandte Chemie, 1995, 107, 1911-1913.	1.6	9
295	Designed Assemblies in Open Framework Materials Synthesis: An Interrupted Sodalite and An Expanded Sodalite. Angewandte Chemie International Edition in English, 1995, 34, 1745-1747.	4.4	119
296	Template symmetry effect in open-framework synthesis: a new vanadium(IV) phosphate. Journal of the Chemical Society Chemical Communications, 1995, , 1337.	2.0	28
297	Structure of (BEDT-TTF)4[Hg2Br6].THF. Acta Crystallographica Section C: Crystal Structure Communications, 1994, 50, 23-25.	0.4	2
298	Electronic and molecular structure of the composite organic metal (BO)2.413. Chemistry of Materials, 1991, 3, 647-651.	3.2	9
299	Continuously variable mercury-sulfur coordination in the low-dimensional organic metal (BEDT-TTF)Hg0.776(SCN)2 and its description by the bond valence sum method. Journal of the American Chemical Society, 1991, 113, 5087-5089.	6.6	10
300	BEDT-TTF-based synmetal: synthesis, structure, ESR, and electrical properties of (BEDT-TTF)Hg0.776(SCN)2. Chemistry of Materials, 1991, 3, 508-513.	3.2	10
301	Structure and properties of a new \hat{I}^2 -phase organic metal: (BEDT-TTF)2Cu2(CN)3. Solid State Communications, 1991, 79, 1053-1057.	0.9	28
302	Simultaneous Control of Pore‧pace Partition and Charge Distribution in Multiâ€Modular Metalâ€Organic Frameworks. Angewandte Chemie, 0, , .	1.6	10
303	Metalâ€mediated Directionalâ€capping of Rodâ€packing Metalâ€organic Frameworks. Chemistry - A European Journal, 0, , .	1.7	0