List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3829427/publications.pdf Version: 2024-02-01

ΧιλΝ-ΗΠΙ ΒΠ

#	Article	IF	CITATIONS
1	Metal–Organic Frameworks for Separation. Advanced Materials, 2018, 30, e1705189.	21.0	835
2	Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate. Nature, 1997, 388, 735-741.	27.8	555
3	The Interface Chemistry between Chalcogenide Clusters and Open Framework Chalcogenides. Accounts of Chemical Research, 2005, 38, 293-303.	15.6	541
4	Induction of chiral porous solids containing only achiral building blocks. Nature Chemistry, 2010, 2, 353-361.	13.6	522
5	Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 4227-4231.	13.8	430
6	Pore Space Partition in Metal–Organic Frameworks. Accounts of Chemical Research, 2017, 50, 407-417.	15.6	423
7	Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy and Environmental Science, 2021, 14, 1897-1927.	30.8	415
8	Microporous and Photoluminescent Chalcogenide Zeolite Analogs. Science, 2002, 298, 2366-2369.	12.6	410
9	Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity. Nature, 2003, 426, 428-432.	27.8	399
10	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj E Chemie - International Edition, 2019, 58, 12185-12189.	TQq0 0 0 1 13.8	gBT /Overloci 350
11	Pore Space Partition and Charge Separation in Cage-within-Cage Indiumâ^'Organic Frameworks with High CO ₂ Uptake. Journal of the American Chemical Society, 2010, 132, 17062-17064.	13.7	339
12	Selective anion exchange with nanogated isoreticular positive metal-organic frameworks. Nature Communications, 2013, 4, 2344.	12.8	336
13	Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 13001-13005.	13.8	334
14	Homochiral Crystallization of Microporous Framework Materials from Achiral Precursors by Chiral Catalysis. Journal of the American Chemical Society, 2008, 130, 12882-12883.	13.7	319
15	Large-Cage Zeolite Structures with Multidimensional 12-Ring Channels. Science, 1997, 278, 2080-2085.	12.6	308
16	Systematic and Dramatic Tuning on Gas Sorption Performance in Heterometallic Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 2524-2527.	13.7	290
17	Pore Space Partition by Symmetry-Matching Regulated Ligand Insertion and Dramatic Tuning on Carbon Dioxide Uptake. Journal of the American Chemical Society, 2015, 137, 1396-1399.	13.7	284
18	Synthesis and organization of zeolite-like materials with three-dimensional helical pores. Nature, 1998, 395, 154-157.	27.8	279

#	Article	IF	CITATIONS
19	Solvent- and Vapor-Induced Isomerization between the Luminescent Solids [CuI(4-pic)]4and [CuI(4-pic)]â^ž(pic = methylpyridine). The Structural Basis for the Observed Luminescence Vapochromism. Chemistry of Materials, 2000, 12, 3385-3391.	6.7	274
20	Hexagonal@Cubic CdS Core@Shell Nanorod Photocatalyst for Highly Active Production of H ₂ with Unprecedented Stability. Advanced Materials, 2016, 28, 8906-8911.	21.0	271
21	Open-Framework Chalcogenides as Visible-Light Photocatalysts for Hydrogen Generation from Water. Angewandte Chemie - International Edition, 2005, 44, 5299-5303.	13.8	248
22	Multiroute Synthesis of Porous Anionic Frameworks and Size-Tunable Extraframework Organic Cation-Controlled Gas Sorption Properties. Journal of the American Chemical Society, 2009, 131, 16027-16029.	13.7	247
23	Luminescent MTN -Type Cluster–Organic Framework with 2.6 nm Cages. Journal of the American Chemical Society, 2012, 134, 17881-17884.	13.7	239
24	Tetrahedral Chalcogenide Clusters and Open Frameworks. Chemistry - A European Journal, 2004, 10, 3356-3362.	3.3	235
25	Heterometalâ€Embedded Organic Conjugate Frameworks from Alternating Monomeric Iron and Cobalt Metalloporphyrins and Their Application in Design of Porous Carbon Catalysts. Advanced Materials, 2015, 27, 3431-3436.	21.0	231
26	Chiral chemistry of metal–camphorate frameworks. Chemical Society Reviews, 2016, 45, 3122-3144.	38.1	229
27	Versatile Structureâ€Directing Roles of Deepâ€Eutectic Solvents and Their Implication in the Generation of Porosity and Open Metal Sites for Gas Storage. Angewandte Chemie - International Edition, 2009, 48, 3486-3490.	13.8	227
28	Zeolitic Boron Imidazolate Frameworks. Angewandte Chemie - International Edition, 2009, 48, 2542-2545.	13.8	224
29	Development of Composite Inorganic Building Blocks for MOFs. Journal of the American Chemical Society, 2012, 134, 4517-4520.	13.7	222
30	Monolithic Mesoporous Silica Templated by Microemulsion Liquid Crystals. Journal of the American Chemical Society, 2000, 122, 994-995.	13.7	212
31	An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nature Communications, 2016, 7, 13645.	12.8	205
32	<i>In situ</i> synthesis of n–n Bi ₂ MoO ₆ & Bi ₂ S ₃ heterojunctions for highly efficient photocatalytic removal of Cr(<scp>vi</scp>). Journal of Materials Chemistry A, 2018, 6, 22580-22589.	10.3	200
33	Pore-Space-Partition-Enabled Exceptional Ethane Uptake and Ethane-Selective Ethane–Ethylene Separation. Journal of the American Chemical Society, 2020, 142, 2222-2227.	13.7	199
34	Integrated Molecular Chirality, Absolute Helicity, and Intrinsic Chiral Topology in Three-Dimensional Open-Framework Materials. Journal of the American Chemical Society, 2008, 130, 17246-17247.	13.7	196
35	Multiple Functions of Ionic Liquids in the Synthesis of Threeâ€Dimensional Low onnectivity Homochiral and Achiral Frameworks. Angewandte Chemie - International Edition, 2008, 47, 5434-5437.	13.8	187
36	Hydrothermal Synthesis and Structural Characterization of Zeolite-like Structures Based on Gallium and Aluminum Germanates. Journal of the American Chemical Society, 1998, 120, 13389-13397.	13.7	186

#	Article	IF	CITATIONS
37	Syntheses and Characterizations of Chiral Tetrahedral Cobalt Phosphates with Zeolite ABW and Related Frameworks. Journal of the American Chemical Society, 1997, 119, 2497-2504.	13.7	185
38	Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient CO ₂ Photoreduction. Advanced Materials, 2018, 30, 1704388.	21.0	184
39	An Open-Framework Material with Dangling Organic Functional Groups in 24-Ring Channels. Journal of the American Chemical Society, 2000, 122, 11563-11564.	13.7	181
40	Manganese and Magnesium Homochiral Materials:  Decoration of Honeycomb Channels with Homochiral Chains. Journal of the American Chemical Society, 2007, 129, 14168-14169.	13.7	180
41	Control of Pore Sizes in Mesoporous Silica Templated by Liquid Crystals in Block Copolymerâ^'Cosurfactantâ^'Water Systems. Langmuir, 2000, 16, 5304-5310.	3.5	179
42	Urothermal Synthesis of Crystalline Porous Materials. Angewandte Chemie - International Edition, 2010, 49, 8876-8879.	13.8	179
43	Ultramicroporous Building Units as a Path to Biâ€microporous Metal–Organic Frameworks with High Acetylene Storage and Separation Performance. Angewandte Chemie - International Edition, 2019, 58, 13590-13595.	13.8	173
44	A Tale of Three Carboxylates: Cooperative Asymmetric Crystallization of a Threeâ€Dimensional Microporous Framework from Achiral Precursors. Angewandte Chemie - International Edition, 2010, 49, 1267-1270.	13.8	172
45	Single-Walled Polytetrazolate Metal–Organic Channels with High Density of Open Nitrogen-Donor Sites and Gas Uptake. Journal of the American Chemical Society, 2012, 134, 784-787.	13.7	169
46	Synthesis and Photocatalytic Properties of a New Heteropolyoxoniobate Compound: K ₁₀ [Nb ₂ O ₂ (H ₂ O) ₂][SiNb ₁₂ O <s Journal of the American Chemical Society, 2011, 133, 6934-6937.</s 	ub 140 <td>ıb≯]&812H<sı< td=""></sı<></td>	ıb≯]& 812H <sı< td=""></sı<>
47	A heterometallic sodium–europium-cluster-based metal–organic framework as a versatile and water-stable chemosensor for antibiotics and explosives. Journal of Materials Chemistry C, 2017, 5, 8469-8474.	5.5	168
48	Comparative Study of Homochiral and Racemic Chiral Metal-Organic Frameworks Built from Camphoric Acid. Chemistry of Materials, 2007, 19, 5083-5089.	6.7	166
49	α-Iminocarboxamidatoâ^'Nickel(II) Ethylene Polymerization Catalysts. Journal of the American Chemical Society, 2001, 123, 5352-5353.	13.7	163
50	Hydrothermal syntheses and structures of three one-dimensional heteropolytungstates formed by Dawson or Keggin cluster units. Dalton Transactions RSC, 2001, , 2009-2014.	2.3	162
51	Zeolite RHO-Type Net with the Lightest Elements. Journal of the American Chemical Society, 2009, 131, 6111-6113.	13.7	161
52	Crystalline Inorganic Frameworks with 56-Ring, 64-Ring, and 72-Ring Channels. Science, 2013, 339, 811-813.	12.6	158
53	Self-Assembly of Novel Dye Molecules and [Cd8(SPh)12]4+Cubic Clusters into Three-Dimensional Photoluminescent Superlattice. Journal of the American Chemical Society, 2002, 124, 9688-9689.	13.7	157
54	Anionic Lanthanide MOFs as a Platform for Iron-Selective Sensing, Systematic Color Tuning, and Efficient Nanoparticle Catalysis. Inorganic Chemistry, 2017, 56, 1402-1411.	4.0	157

#	Article	IF	CITATIONS
55	Synthesis of Buteneâ ''Ethylene and Hexeneâ ''Buteneâ ''Ethylene Copolymers from Ethylene via Tandem Action of Well-Defined Homogeneous Catalysts. Journal of the American Chemical Society, 2000, 122, 1830-1831.	13.7	156
56	Entrapment of Metal Clusters in Metal–Organic Framework Channels by Extended Hooks Anchored at Open Metal Sites. Journal of the American Chemical Society, 2013, 135, 10270-10273.	13.7	154
57	Tunable MoS ₂ /SnO ₂ P–N Heterojunctions for an Efficient Trimethylamine Gas Sensor and 4-Nitrophenol Reduction Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 12375-12384.	6.7	151
58	Atomically Precise Doping of Monomanganese Ion into Coreless Supertetrahedral Chalcogenide Nanocluster Inducing Unusual Red Shift in Mn ²⁺ Emission. Journal of the American Chemical Society, 2014, 136, 4769-4779.	13.7	150
59	Photochemical Nitric Oxide Precursors:Â Synthesis, Photochemistry, and Ligand Substitution Kinetics of Ruthenium Salen Nitrosyl and Ruthenium Salophen Nitrosyl Complexes1. Inorganic Chemistry, 2002, 41, 3728-3739.	4.0	146
60	Organic Cation and Chiral Anion Templated 3D Homochiral Openâ€Framework Materials with Unusual Squareâ€Planar {M ₄ (OH)} Units. Angewandte Chemie - International Edition, 2007, 46, 8388-8391.	13.8	143
61	Cooperative Crystallization of Heterometallic Indium–Chromium Metal–Organic Polyhedra and Their Fast Proton Conductivity. Angewandte Chemie - International Edition, 2015, 54, 7886-7890.	13.8	141
62	Nonaqueous Synthesis and Selective Crystallization of Gallium Sulfide Clusters into Three-Dimensional Photoluminescent Superlattices. Journal of the American Chemical Society, 2003, 125, 1138-1139.	13.7	138
63	Size-Selective Crystallization of Homochiral Camphorate Metal–Organic Frameworks for Lanthanide Separation. Journal of the American Chemical Society, 2014, 136, 12572-12575.	13.7	138
64	Pushing Up the Size Limit of Chalcogenide Supertetrahedral Clusters:Â Two- and Three-Dimensional Photoluminescent Open Frameworks from (Cu5In30S54)13-Clusters. Journal of the American Chemical Society, 2002, 124, 12646-12647.	13.7	137
65	Porous Indium–Organic Frameworks and Systematization of Structural Building Blocks. Angewandte Chemie - International Edition, 2011, 50, 8858-8862.	13.8	137
66	Solvothermal in Situ Ligand Synthesis through Disulfide Cleavage:Â 3D (3,4)-Connected and 2D Square-Grid-Type Coordination Polymers. Inorganic Chemistry, 2006, 45, 5736-5738.	4.0	135
67	Chiralization of Diamond Nets: Stretchable Helices and Chiral and Achiral Nets with Nearly Identical Unit Cells. Angewandte Chemie - International Edition, 2007, 46, 6115-6118.	13.8	135
68	Interrupted Zeolite LTA and ATN-Type Boron Imidazolate Frameworks. Journal of the American Chemical Society, 2011, 133, 11884-11887.	13.7	134
69	Multivariable Modular Design of Pore Space Partition. Journal of the American Chemical Society, 2016, 138, 15102-15105.	13.7	132
70	Synthesis, Characterization, and Ethylene Oligomerization Action of [(C6H5)2PC6H4C(O-B(C6F5)3)O-κ2P,O]Ni(η3-CH2C6H5). Journal of the American Chemical Society, 2000, 122, 12379-12380.	13.7	131
71	Cooperative Assembly of Threeâ€Ringâ€Based Zeoliteâ€Type Metal–Organic Frameworks and Johnsonâ€Type Dodecahedra. Angewandte Chemie - International Edition, 2011, 50, 1849-1852.	13.8	128
72	Mimicking Zeolite to Its Core: Porous Sodalite Cages as Hangers for Pendant Trimeric M ₃ (OH) Clusters (M = Mg, Mn, Co, Ni, Cd). Journal of the American Chemical Society, 2012, 134, 1934-1937.	13.7	126

#	Article	IF	CITATIONS
73	Highly Selective and Rapid Uptake of Radionuclide Cesium Based on Robust Zeolitic Chalcogenide via Stepwise Ion-Exchange Strategy. Chemistry of Materials, 2016, 28, 8774-8780.	6.7	126
74	Mimicking High-Silica Zeolites: Highly Stable Germanium- and Tin-Rich Zeolite-Type Chalcogenides. Journal of the American Chemical Society, 2015, 137, 6184-6187.	13.7	123
75	Synthesis and Structural Characterization of Several Ruthenium Porphyrin Nitrosyl Complexes. Inorganic Chemistry, 1997, 36, 4838-4848.	4.0	120
76	Three-Dimensional Open Framework Built from Cuâ^'S Icosahedral Clusters and Its Photocatalytic Property. Journal of the American Chemical Society, 2008, 130, 15238-15239.	13.7	120
77	Designed Assemblies in Open Framework Materials Synthesis: An Interrupted Sodalite and An Expanded Sodalite. Angewandte Chemie International Edition in English, 1995, 34, 1745-1747.	4.4	119
78	Three-Dimensional Superlattices Built from (M4In16S33)10-(M = Mn, Co, Zn, Cd) Supertetrahedral Clusters. Journal of the American Chemical Society, 2001, 123, 11506-11507.	13.7	118
79	A chiral tetragonal magnesium-carboxylate framework with nanotubular channels. Chemical Communications, 2011, 47, 11852.	4.1	117
80	Monocopper Doping in Cd-In-S Supertetrahedral Nanocluster via Two-Step Strategy and Enhanced Photoelectric Response. Journal of the American Chemical Society, 2013, 135, 10250-10253.	13.7	117
81	Framework Cationization by Preemptive Coordination of Open Metal Sites for Anionâ€Exchange Encapsulation of Nucleotides and Coenzymes. Angewandte Chemie - International Edition, 2016, 55, 2768-2772.	13.8	116
82	A Rare (3,4) onnected Chalcogenide Superlattice and Its Photoelectric Effect. Angewandte Chemie - International Edition, 2008, 47, 113-116.	13.8	114
83	Homochiral Coordination Polymer with Infinite Double-Stranded Helices. Inorganic Chemistry, 2007, 46, 1511-1513.	4.0	113
84	High CO ₂ and H ₂ Uptake in an Anionic Porous Framework with Amino-Decorated Polyhedral Cages. Chemistry of Materials, 2012, 24, 2624-2626.	6.7	109
85	Chiral Semiconductor Frameworks from Cadmium Sulfide Clusters. Journal of the American Chemical Society, 2007, 129, 8412-8413.	13.7	107
86	Direct Observation of Two Types of Proton Conduction Tunnels Coexisting in a New Porous Indium–Organic Framework. Chemistry of Materials, 2014, 26, 2492-2495.	6.7	107
87	Nanocluster with One Missing Core Atom:  A Three-Dimensional Hybrid Superlattice Built from Dual-Sized Supertetrahedral Clusters. Journal of the American Chemical Society, 2002, 124, 10268-10269.	13.7	106
88	Three-Dimensional Homochiral Transition-Metal Camphorate Architectures Directed by a Flexible Auxiliary Ligand. Inorganic Chemistry, 2008, 47, 3495-3497.	4.0	106
89	Crystalline Superlattices from Single-Sized Quantum Dots. Journal of the American Chemical Society, 2005, 127, 11963-11965.	13.7	105
90	Multicomponent Selfâ€Assembly of a Nested Co ₂₄ @Co ₄₈ Metal–Organic Polyhedral Framework. Angewandte Chemie - International Edition, 2011, 50, 8034-8037.	13.8	105

#	Article	IF	CITATIONS
91	Threeâ€Dimensional Covalent Coâ€Assembly between Inorganic Supertetrahedral Clusters and Imidazolates. Angewandte Chemie - International Edition, 2011, 50, 2536-2539.	13.8	104
92	New Zeolitic Imidazolate Frameworks: From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary Ligands. Chemistry of Materials, 2008, 20, 7377-7382.	6.7	102
93	Largest Molecular Clusters in the Supertetrahedral T <i>n</i> Series. Journal of the American Chemical Society, 2010, 132, 10823-10831.	13.7	102
94	Porous Metal Carboxylate Boron Imidazolate Frameworks. Angewandte Chemie - International Edition, 2010, 49, 5362-5366.	13.8	101
95	Pyridinecarboxamidatoâ^'Nickel(II) Complexes. Organometallics, 2001, 20, 5425-5431.	2.3	100
96	Assembly of Supertetrahedral T ₅ Copperâ^'Indium Sulfide Clusters into a Super-Supertetrahedron of Infinite Order. Journal of the American Chemical Society, 2010, 132, 3283-3285.	13.7	99
97	Novel Germanate Zeolite Structures with 3-Rings. Journal of the American Chemical Society, 1998, 120, 11204-11205.	13.7	98
98	Anion Stripping as a General Method to Create Cationic Porous Framework with Mobile Anions. Journal of the American Chemical Society, 2014, 136, 7579-7582.	13.7	97
99	Histidine-Controlled Two-Dimensional Assembly of Zinc Phosphite Four-Ring Units. Chemistry of Materials, 2006, 18, 1857-1860.	6.7	96
100	Organization of Tetrahedral Chalcogenide Clusters Using a Tetrahedral Quadridentate Linker. Inorganic Chemistry, 2008, 47, 9724-9726.	4.0	96
101	Absolute helicity induction in three-dimensional homochiral frameworks. Chemical Communications, 2009, , 206-208.	4.1	96
102	One-Dimensional Assembly of Chalcogenide Nanoclusters with Bifunctional Covalent Linkers. Journal of the American Chemical Society, 2005, 127, 14990-14991.	13.7	94
103	Temperature dependent charge distribution in three-dimensional homochiral cadmium camphorates. Chemical Communications, 2008, , 444-446.	4.1	94
104	Electron Redistributed Sâ€Đoped Nickel Iron Phosphides Derived from Oneâ€Step Phosphatization of MOFs for Significantly Boosting Electrochemical Water Splitting. Advanced Functional Materials, 2022, 32, .	14.9	93
105	Efficient oxygen reduction by nanocomposites of heterometallic carbide and nitrogen-enriched carbon derived from the cobalt-encapsulated indium–MOF. Chemical Communications, 2014, 50, 15619-15622.	4.1	89
106	Templated Assembly of Sulfide Nanoclusters into Cubic-C3N4 Type Framework. Journal of the American Chemical Society, 2003, 125, 6024-6025.	13.7	88
107	Synthesis and Characterization of a New Family of Thermally Stable Open-Framework Zincophosphate/Arsenate Phases: M3Zn4O(XO4)3·nH2O (M = Na, K, Rb, Li,; X = P, As;n= â ¹ /43.5â ⁻³ 6). Crystal Structures of Rb3Zn4O(PO4)3·3.5H2O, K3Zn4O(AsO4)3·4H2O, and Na3Zn4O(PO4)3·6H2O. Chemistry of Materials. 1996. 8, 691-700.	6.7	87
108	Metal Chalcogenide Supertetrahedral Clusters: Synthetic Control over Assembly, Dispersibility, and Their Functional Applications. Accounts of Chemical Research, 2020, 53, 2261-2272.	15.6	87

#	Article	IF	CITATIONS
109	Ionothermal Synthesis of Homochiral Framework with Acetate-Pillared Cobaltâ^'Camphorate Architecture. Inorganic Chemistry, 2008, 47, 5567-5569.	4.0	85
110	Ion Pair Charge-Transfer Salts Based on Metal Chalcogenide Clusters and Methyl Viologen Cations. Chemistry of Materials, 2008, 20, 4170-4172.	6.7	85
111	Superbase Route to Supertetrahedral Chalcogenide Clusters. Journal of the American Chemical Society, 2012, 134, 3619-3622.	13.7	84
112	Design of Pore Size and Functionality in Pillar-Layered Zn-Triazolate-Dicarboxylate Frameworks and Their High CO ₂ /CH ₄ and C2 Hydrocarbons/CH ₄ Selectivity. Inorganic Chemistry, 2015, 54, 9862-9868.	4.0	82
113	Metal-Complex-Decorated Homochiral Heterobimetallic Telluride Single-Stranded Helix. Inorganic Chemistry, 2007, 46, 7262-7264.	4.0	81
114	A novel sandwich-type polyoxometalate compound with visible-light photocatalytic H2 evolution activity. Chemical Communications, 2011, 47, 3918.	4.1	81
115	Efficient Gas-Sensing for Formaldehyde with 3D Hierarchical Co ₃ O ₄ Derived from Co ₅ -Based MOF Microcrystals. Inorganic Chemistry, 2017, 56, 14111-14117.	4.0	81
116	Fe(H2O)2BP2O8·H2O, a First Zeotype Ferriborophosphate with Chiral Tetrahedral Framework Topology. Chemistry of Materials, 2000, 12, 3243-3245.	6.7	80
117	Induction in urothermal synthesis of chiral porous materials from achiral precursors. Chemical Communications, 2011, 47, 4950.	4.1	80
118	From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction. Dalton Transactions, 2015, 44, 6748-6754.	3.3	80
119	Generalized Synthesis of Zeolite-Type Metal–Organic Frameworks Encapsulating Immobilized Transition-Metal Clusters. Journal of the American Chemical Society, 2012, 134, 11936-11939.	13.7	79
120	Pushing up the Size Limit of Metal Chalcogenide Supertetrahedral Nanocluster. Journal of the American Chemical Society, 2018, 140, 888-891.	13.7	79
121	Metal-Chelate Dye-Controlled Organization of Cd32S14(SPh)404-Nanoclusters into Three-Dimensional Molecular and Covalent Open Architecture. Journal of the American Chemical Society, 2006, 128, 4528-4529.	13.7	78
122	A Strategy for Constructing Poreâ€Spaceâ€Partitioned MOFs with High Uptake Capacity for C ₂ Hydrocarbons and CO ₂ . Angewandte Chemie - International Edition, 2020, 59, 19027-19030.	13.8	77
123	A New Zeolitic Topology with Sixteenâ€Membered Ring and Multidimensional Large Pore Channels. Chemistry - A European Journal, 2008, 14, 7771-7773.	3.3	76
124	α-Iminoenamido Ligands:  A Novel Structure for Transition-Metal Activation. Organometallics, 2002, 21, 3082-3084.	2.3	75
125	Pentasupertetrahedral Clusters as Building Blocks for a Three-Dimensional Sulfide Superlattice. Angewandte Chemie - International Edition, 2004, 43, 4753-4755.	13.8	73
126	Three-Dimensional Photoluminescent Frameworks Constructed from Size-Tunable Cul Clusters. Crystal Growth and Design, 2010, 10, 2047-2049.	3.0	72

#	ŧ	Article	IF	CITATIONS
1	.27	Chromium(III) Complexes for Photochemical Nitric Oxide Generation from Coordinated Nitrite:Â Synthesis and Photochemistry of Macrocyclic Complexes with Pendant Chromophores,trans-[Cr(L)(ONO)2]BF4. Inorganic Chemistry, 2005, 44, 4157-4165.	4.0	71
1	28	Modeling the Catalytic Site of Vanadium Bromoperoxidase:Â Synthesis and Structural Characterization of Intramolecularly H-bonded Vanadium(V) Oxoperoxo Complexes, [VO(O2)(NH2pyg2)]K and [VO(O2)(BrNH2pyg2)]K. Inorganic Chemistry, 2002, 41, 161-163.	4.0	70
1	.29	A Tale of Two Trimers from Two Different Worlds: A COFâ€Inspired Synthetic Strategy for Poreâ€6pace Partitioning of MOFs. Angewandte Chemie - International Edition, 2019, 58, 6316-6320.	13.8	70
1	.30	Synthesis and characterization of mesostructured aluminophosphates using the fluoride route. Chemical Communications, 1997, , 949-950.	4.1	69
1	.31	(3,4)-Connected Zincophosphites as Structural Analogues of Zinc Hydrogen Phosphate. Inorganic Chemistry, 2006, 45, 4654-4660.	4.0	69
1	32	Arsenate Zeolite Analogues with 11 Topological Types. Journal of the American Chemical Society, 2001, 123, 8608-8609.	13.7	68
1	.33	Synthetic Control of Selenide Supertetrahedral Clusters and Threeâ€Dimensional Coâ€assembly by Chargeâ€Complementary Metal Cations. Angewandte Chemie - International Edition, 2009, 48, 7204-7207.	13.8	68
1	.34	Zero- and Two-Dimensional Organization of Tetrahedral Cadmium Chalcogenide Clusters with Bifunctional Covalent Linkers. Chemistry of Materials, 2006, 18, 4307-4311.	6.7	67
1	.35	Porous Lithium Imidazolate Frameworks Constructed with Chargeâ€Complementary Ligands. Chemistry - A European Journal, 2010, 16, 13035-13040.	3.3	66
1	.36	A 3D Open–Framework Indium Telluride and Its Selenide and Sulfide Analogues We thank UC Riverside, UC Energy Institute, and the donors of The Petroleum Research Fund (administered by the ACS) for funding Angewandte Chemie - International Edition, 2002, 41, 1959.	13.8	65
1	.37	Three-Dimensional Frameworks of Gallium Selenide Supertetrahedral Clusters. Angewandte Chemie - International Edition, 2004, 43, 1502-1505.	13.8	65
1	.38	A zeolitic porous lithium–organic framework constructed from cubane clusters. Chemical Communications, 2011, 47, 5536-5538.	4.1	65
1	.39	Two-Dimensional Indium Sulfide Framework Constructed from Pentasupertetrahedral P1 and Supertetrahedral T2 Clusters. Inorganic Chemistry, 2006, 45, 6684-6687.	4.0	64
1	.40	In Situ Synthesis of Tetradentate Dye for Construction of Three-Dimensional Homochiral Phosphor. Chemistry of Materials, 2008, 20, 5457-5459.	6.7	63
1	.41	Boratabenzene Complexes of Cr(III). Journal of the American Chemical Society, 2000, 122, 730-731.	13.7	62
1	.42	Two Zeoliteâ€Type Frameworks in One Metal–Organic Framework with Zn ₂₄ @Zn ₁₀₄ Cubeâ€inâ€Sodalite Architecture. Angewandte Chemie - International Edition, 2012, 51, 8538-8541.	13.8	62
1	43	Hostâ^'Guest Symmetry and Charge Matching in Two Germanates with Intersecting Three-Dimensional Channels. Chemistry of Materials, 2000, 12, 1505-1507.	6.7	61
1	.44	One-dimensional coordination polymers containing penta-supertetrahedral sulfide clusters linked by dipyridyl ligands. Chemical Communications, 2005, , 4916.	4.1	61

#	Article	IF	CITATIONS
145	Two Ethylenediamine-Templated Zeolite-Type Structures in Zinc Arsenate and Cobalt Phosphate Systems. Journal of Solid State Chemistry, 1998, 136, 210-215.	2.9	60
146	Ligand-Controlled Integration of Zn and Tb by Photoactive Terpyridyl-Functionalized Tricarboxylates as Highly Selective and Sensitive Sensors for Nitrofurans. Inorganic Chemistry, 2018, 57, 3833-3839.	4.0	60
147	Two Three-Dimensional Tetrahedral Framework Zinc Phosphates with Infinite Zn–O–Zn Chains: H[Zn4(PO4)3]H2O and [Zn4(H2O)(PO4)3] NH(CH3)3. Journal of Solid State Chemistry, 1996, 125, 243-248.	2.9	58
148	Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 13181-13185.	2.0	58
149	Phase Selection and Site-Selective Distribution by Tin and Sulfur in Supertetrahedral Zinc Gallium Selenides. Journal of the American Chemical Society, 2011, 133, 9616-9625.	13.7	57
150	Highly Tunable Heterojunctions from Multimetallic Sulfide Nanoparticles and Silver Nanowires. Angewandte Chemie - International Edition, 2018, 57, 5374-5378.	13.8	57
151	Ultrastable High-Connected Chromium Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 14470-14474.	13.7	57
152	Synthesis, Crystal Structure, and Magnetic Properties of a New Polymorphic Sodium Cobalt Phosphate with Trigonal Bipyramidal Co2+and a Tunnel Structure. Journal of Solid State Chemistry, 1997, 129, 328-333.	2.9	56
153	Lockâ€andâ€Key and Shapeâ€Memory Effects in an Unconventional Synthetic Path to Magnesium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 11757-11762.	13.8	56
154	Na2Zn3(CO3)4·3H2O, a Microporous Sodium Zincocarbonate with a Diamond-Type Tetrahedral-Triangular Topology. Journal of the American Chemical Society, 1996, 118, 3039-3040.	13.7	55
155	Cadmiumâ^'Porphyrin Coordination Networks: Rich Coordination Modes and Three-Dimensional Four-Connected CdSO4and (3,5)-Connected hms Nets. Crystal Growth and Design, 2007, 7, 2576-2581.	3.0	54
156	Nucleotide atalyzed Conversion of Racemic Zeolite‶ype Zincophosphate into Enantioenriched Crystals. Angewandte Chemie - International Edition, 2009, 48, 6049-6051.	13.8	54
157	Variable Lithium Coordination Modes in Two- and Three-Dimensional Lithium Boron Imidazolate Frameworks. Chemistry of Materials, 2009, 21, 3830-3837.	6.7	54
158	A Nine-Connected Mixed-Ligand Nickel-Organic Framework and Its Gas Sorption Properties. Crystal Growth and Design, 2011, 11, 3713-3716.	3.0	54
159	Synthesis, Characterization, and Reactivity of Chromium Boratabenzene Complexes. Organometallics, 2000, 19, 3948-3956.	2.3	53
160	Two-dimensional organization of [ZnGe3S9(H2O)]4– supertetrahedral clusters templated by a metal complex. Chemical Communications, 2005, , 2805.	4.1	53
161	Control of Structural Ordering in Crystalline Lamellar Aluminophosphates with Periodicity from 51 to 62 Ã Inorganic Chemistry, 2000, 39, 2-3.	4.0	52
162	Indium selenide superlattices from (In10Se18)6– supertetrahedral clusters. Chemical Communications, 2002, , 1344-1345.	4.1	51

#	Article	IF	CITATIONS
163	Zinc(II)-boron(III)-imidazolate framework (ZBIF) with unusual pentagonal channels prepared from deep eutectic solvent. Dalton Transactions, 2010, 39, 697-699.	3.3	50
164	Porous <i>ctn</i> â€Type Boron Imidazolate Framework for Gas Storage and Separation. Chemistry - A European Journal, 2013, 19, 11527-11530.	3.3	50
165	Pore-Space Partition and Optimization for Propane-Selective High-Performance Propane/Propylene Separation. ACS Applied Materials & Interfaces, 2021, 13, 52160-52166.	8.0	50
166	Structural and chemical studies of zeolite ABW type phases: Syntheses and characterizations of an ammonium zincophosphate and an ammonium beryllophosphate zeolite ABW structure. Zeolites, 1997, 19, 200-208.	0.5	49
167	Ag-NPs embedded in two novel Zn ₃ /Zn ₅ -cluster-based metal–organic frameworks for catalytic reduction of 2/3/4-nitrophenol. Dalton Transactions, 2017, 46, 2430-2438.	3.3	49
168	Ligand Charge Separation To Build Highly Stable Quasi-Isomer of MOF-74-Zn. Journal of the American Chemical Society, 2019, 141, 9808-9812.	13.7	49
169	Packing Modes of Distyrylbenzene Derivatives. Chemistry of Materials, 2000, 12, 1422-1430.	6.7	48
170	Zeolitic BIF Crystal Directly Producing Noble-Metal Nanoparticles in Its Pores for Catalysis. Scientific Reports, 2014, 4, 3923.	3.3	48
171	Cooperativity by Multi-Metals Confined in Supertetrahedral Sulfide Nanoclusters To Enhance Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2019, 31, 553-559.	6.7	48
172	Metalâ~'Organic Frameworks from Zinc Sulfite Clusters, Chains, and Sheets:Â 4-Connected, (3,4)-Connected 3-D Frameworks and 2-D Arrays of Catenane-Like Interlocking Rings. Inorganic Chemistry, 2006, 45, 10722-10727.	4.0	47
173	Spontaneous Resolution of Racemic Camphorates in the Formation of Three-Dimensional Metalâ~'Organic Frameworks. Inorganic Chemistry, 2009, 48, 6356-6358.	4.0	47
174	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj ET Chemie, 2019, 131, 12313-12317.	Qq0 0 0 r 2.0	gBT /Overloc 47
175	Synthesis and Characterizations of a Polymorphic Sodium Cobalt Phosphate with Edge-Sharing Co2+Octahedral Chains. Journal of Solid State Chemistry, 1997, 131, 160-166.	2.9	46
176	Ultramicroporous Building Units as a Path to Biâ€microporous Metal–Organic Frameworks with High Acetylene Storage and Separation Performance. Angewandte Chemie, 2019, 131, 13724-13729.	2.0	46
177	First Open-Framework Zinc Germanates by a Molecular Templating Route. Chemistry of Materials, 2000, 12, 1811-1813.	6.7	45
178	Induction of trimeric [Mg3(OH)(CO2)6] in a porous framework by a desymmetrized tritopic ligand. Dalton Transactions, 2012, 41, 2866.	3.3	45
179	A lanthanide complex for metal encapsulations and anion exchanges. Chemical Communications, 2016, 52, 10125-10128.	4.1	45
180	Boratastilbene:Â Synthesis, Structural Characterization, and Photophysics. Journal of the American Chemical Society, 2000, 122, 3969-3970.	13.7	44

#	Article	IF	CITATIONS
181	Cation-Exchanged Zeolitic Chalcogenides for CO ₂ Adsorption. Inorganic Chemistry, 2017, 56, 14999-15005.	4.0	44
182	Hydrothermal Synthesis of New Pure Beryllophosphate Molecular Sieve Phases from Concentrated Amines. Chemistry of Materials, 2001, 13, 2042-2048.	6.7	42
183	Gallium Antimonide-Doped Germanium Clathrate—A p-Type Thermoelectric Cage Structure. Journal of Solid State Chemistry, 2000, 151, 61-64.	2.9	40
184	A Large Indium Sulfide Supertetrahedral Cluster Built from Integration of ZnS-like Tetrahedral Shell with NaCl-like Octahedral Core. Journal of the American Chemical Society, 2011, 133, 15886-15889.	13.7	40
185	MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles. Nanoscale, 2015, 7, 10817-10822.	5.6	40
186	Charge-tunable indium–organic frameworks built from cationic, anionic, and neutral building blocks. Dalton Transactions, 2015, 44, 16671-16674.	3.3	40
187	Preferential Cocrystallization among Distyrylbenzene Derivatives. Chemistry of Materials, 2000, 12, 2311-2318.	6.7	39
188	Na5(In4S)(InS4)3·6H2O, a Zeolite-like Structure with Unusual SIn4Tetrahedra. Journal of the American Chemical Society, 2005, 127, 5286-5287.	13.7	39
189	Isolation of Germanate Sheets with Three-Membered Rings:Â A Possible Precursor to Three-Dimensional Zeolite-Type Germanates. Chemistry of Materials, 1999, 11, 3423-3424.	6.7	38
190	Solvothermal Conversion of Discrete Cubic Cadmium Thiolate Cluster into Supertetrahedral Cluster Decorating Quartz-Type Chiral Superlattice. Chemistry of Materials, 2008, 20, 3239-3241.	6.7	38
191	Zeolitic Boron Imidazolate Frameworks with 4 onnected Octahedral Metal Centers. Chemistry - A European Journal, 2012, 18, 11876-11879.	3.3	38
192	New Lithium Ion Clusters for Construction of Porous MOFs. Crystal Growth and Design, 2014, 14, 897-900.	3.0	38
193	Selective Crystallization of Rareâ€Earth Ions into Cationic Metalâ€Organic Frameworks for Rareâ€Earth Separation. Angewandte Chemie - International Edition, 2021, 60, 11148-11152.	13.8	38
194	Ultrahighâ€Uptake Capacityâ€Enabled Gas Separation and Fruit Preservation by a New Singleâ€Walled Nickel–Organic Framework. Advanced Science, 2021, 8, 2003141.	11.2	38
195	Assembly of super-supertetrahedral metal–organic clusters into a hierarchical porous cubic framework. Chemical Communications, 2012, 48, 7498.	4.1	37
196	Coassembly between the Largest and Smallest Metal Chalcogenide Supertetrahedral Clusters. Inorganic Chemistry, 2013, 52, 2259-2261.	4.0	36
197	Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 4271-4275.	2.0	36
198	Amine-directed syntheses and crystal structures of phosphate-based zeolite analogs. Microporous and Mesoporous Materials, 1998, 23, 221-229.	4.4	35

#	Article	IF	CITATIONS
199	An infinite square lattice of super-supertetrahedral T6-like tin oxyselenide clusters. Chemical Communications, 2014, 50, 4044.	4.1	35
200	Homoâ€Helical Rod Packing as a Path Toward the Highest Density of Guestâ€Binding Metal Sites in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 6208-6211.	13.8	35
201	Chiral Isocamphoric Acid: Founding a Large Family of Homochiral Porous Materials. Angewandte Chemie - International Edition, 2018, 57, 7101-7105.	13.8	35
202	Pore space partition of metal-organic frameworks for gas storage and separation. EnergyChem, 2022, 4, 100080.	19.1	35
203	Template control of framework topology and charge in new phosphate- and arsenate-based sodalite analogs. Microporous and Mesoporous Materials, 1998, 20, 371-379.	4.4	34
204	Ruthenium Carbene Complexes Featuring a Tridentate Pincer-type Ligand. Organometallics, 2005, 24, 4289-4297.	2.3	34
205	Atomically precise metal chalcogenide supertetrahedral clusters: frameworks to molecules, and structure to function. National Science Review, 2022, 9, nwab076.	9.5	34
206	Amine-Controlled Assembly of Metalâ^'Sulfite Architecture from 1D Chains to 3D Framework. Inorganic Chemistry, 2007, 46, 6283-6290.	4.0	33
207	Advancing Magnesium–Organic Porous Materials through New Magnesium Cluster Chemistry. Crystal Growth and Design, 2016, 16, 1261-1267.	3.0	33
208	Enabling Homochirality and Hydrothermal Stability in Zn ₄ O-Based Porous Crystals. Journal of the American Chemical Society, 2018, 140, 13566-13569.	13.7	33
209	Hydrothermal synthesis and low temperature crystal structure of an ammonium beryllophosphate with the merlinoite topology. Microporous and Mesoporous Materials, 1998, 26, 61-66.	4.4	32
210	Synthesis and Luminescence Properties of Cr(III) Complexes with Cyclam-Type Ligands Having Pendant Chromophores,trans-[Cr(L)Cl2]Cl1. Inorganic Chemistry, 2005, 44, 4166-4174.	4.0	32
211	A Lamellar Hydrated Barium Cobalt Phosphate with a Two-Dimensional Array of Co–O–Co Network: Ba(CoPO4)2·H2O. Journal of Solid State Chemistry, 1997, 131, 387-393.	2.9	31
212	A new strategy for constructing a disulfide-functionalized ZIF-8 analogue using structure-directing ligand–ligand covalent interaction. Chemical Communications, 2018, 54, 12109-12112.	4.1	31
213	S-Doped Ni(OH) ₂ nano-electrocatalyst confined in semiconductor zeolite with enhanced oxygen evolution activity. Journal of Materials Chemistry A, 2020, 8, 11255-11260.	10.3	31
214	The synthesis of the ligand 5-bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine-1,10-phenanthroline and of its ruthenium(II) and rhenium(I) complexes. Binuclear species with Cu(I) and some photophysical propertiesâ€. Dalton Transactions RSC, 2001, , 1813-1819.	2.3	30
215	ZIF-8 derived carbon materials with multifunctional selective adsorption abilities. Carbon, 2021, 176, 421-430.	10.3	30
216	Cooperative Self-Assembly of Chiral <scp>l</scp> -Malate and Achiral Succinate in the Formation of a Three-Dimensional Homochiral Framework. Inorganic Chemistry, 2008, 47, 8607-8609.	4.0	29

#	Article	IF	CITATIONS
217	A Cooperative Pillar–Template Strategy as a Generalized Synthetic Method for Flexible Homochiral Porous Frameworks. Angewandte Chemie - International Edition, 2018, 57, 3737-3741.	13.8	29
218	Structure and properties of a new κ-phase organic metal: (BEDT-TTF)2Cu2(CN)3. Solid State Communications, 1991, 79, 1053-1057.	1.9	28
219	Template symmetry effect in open-framework synthesis: a new vanadium(IV) phosphate. Journal of the Chemical Society Chemical Communications, 1995, , 1337.	2.0	28
220	Zeoliteâ€ T ype Metal Oxalate Frameworks. Angewandte Chemie - International Edition, 2019, 58, 2889-2892.	13.8	28
221	Synthesis, Characterization and Tunable Electronic/Optical Properties of Ilâ^'VI Semiconductor Species Included in the Sodalite Structure. Chemistry of Materials, 1996, 8, 1930-1943.	6.7	27
222	The synthesis, characterization and structures of the chromium(III) dinitrito complexes: trans-[Cr(L)(ONO)2]+ (L=1,4,8,11-tetraazacyclotetradecane or) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 542 Td (5,7 944-950.	7,7,12,14, 2.4	14-hexameth 27
223	Simultaneous Control of Poreâ€Space Partition and Charge Distribution in Multiâ€Modular Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
224	Transformation of 4-Connected Zeolite Topologies into a Mixed 4- and 6-Connected 3-Dimensional Open Framework. Chemistry of Materials, 1999, 11, 3025-3027.	6.7	26
225	Cooperative Crystallization of Heterometallic Indium–Chromium Metal–Organic Polyhedra and Their Fast Proton Conductivity. Angewandte Chemie, 2015, 127, 7997-8001.	2.0	26
226	Porphyrinic coordination lattices with fluoropillars. Journal of Materials Chemistry A, 2017, 5, 21189-21195.	10.3	26
227	A Strategy for Constructing Poreâ€Spaceâ€Partitioned MOFs with High Uptake Capacity for C 2 Hydrocarbons and CO 2. Angewandte Chemie, 2020, 132, 19189-19192.	2.0	26
228	Selective Ion Exchange and Photocatalysis by Zeolite‣ike Semiconducting Chalcogenide. Chemistry - A European Journal, 2017, 23, 11913-11919.	3.3	25
229	Cobalt Borate Phosphate, Co3[BPO7], Synthesis and Characterization. Journal of Solid State Chemistry, 2001, 156, 281-285.	2.9	24
230	Synthesis and Photophysical Properties of New Chromium(III) Complexes of N-Derivatized 1,4,8,11-Tetraazacyclotetradecane Ligands cis-[Cr(1,8-R2cyclam)Cl2]Cl, Where R Is a Pendant Chromophore. Exclusive Formation of the cis Isomer. Inorganic Chemistry, 2003, 42, 4171-4178.	4.0	24
231	A new enantiopure unsaturated dicarboxylate as a 4-connected unit in a flexible homochiral PtS-type framework. Chemical Communications, 2008, , 1756.	4.1	24
232	Improving Photoluminescence Emission Efficiency of Nanocluster-Based Materials by in Situ Doping Synthetic Strategy. Journal of Physical Chemistry C, 2016, 120, 29390-29396.	3.1	24
233	Cobalt Phosphate Based Zeolite Structures with the Edingtonite Framework Topology. Chemistry of Materials, 1998, 10, 2546-2551.	6.7	23
234	Two new layered bimetallic sulfides: Solvothermal synthesis, crystal structure, optical and magnetic properties. Microporous and Mesoporous Materials, 2010, 132, 328-334.	4.4	23

#	Article	IF	CITATIONS
235	Solventâ€Free Synthesis of Zeolitic Imidazolate Frameworks and the Catalytic Properties of Their Carbon Materials. Chemistry - A European Journal, 2019, 25, 16358-16365.	3.3	23
236	Synthesis and single-crystal structure of Cs3Zn4O(AsO4)3·4H2O, an open-framework zinc arsenate. Microporous and Mesoporous Materials, 2000, 39, 359-365.	4.4	22
237	Synthesis, characterization and C–H activation reactivity of bis(ethylene) boratabenzene rhodium complexes. Chemical Communications, 2001, , 619-620.	4.1	22
238	Formation of Aminoxy and Oxo Complexes from the Reaction of Nb(NMe ₂) ₅ with O ₂ and the Crystal Structure of Nb(NEt ₂) ₅ . Inorganic Chemistry, 2010, 49, 4017-4022.	4.0	21
239	Visibleâ€Lightâ€Driven, Tunable, Photoelectrochemical Performance of a Series of Metalâ€Chelate, Dyeâ€Organized, Crystalline, CdS Nanoclusters. Chemistry - A European Journal, 2014, 20, 8297-8301.	3.3	21
240	A mixed ligand route for the construction of tetrahedrally coordinated porous lithium frameworks. Dalton Transactions, 2011, 40, 8072.	3.3	20
241	A twelve-connected porous framework built from rare linear cadmium tricarboxylate pentamer. Dalton Transactions, 2012, 41, 3620.	3.3	20
242	Framework Cationization by Preemptive Coordination of Open Metal Sites for Anionâ€Exchange Encapsulation of Nucleotides and Coenzymes. Angewandte Chemie, 2016, 128, 2818-2822.	2.0	20
243	Amine-templated syntheses and crystal structures of zeolite rho analogs. Microporous and Mesoporous Materials, 1998, 23, 315-322.	4.4	19
244	Highly effective nanosegregation of dual dopants in a micron-sized nanocluster-based semiconductor molecular single crystal for targeting white-light emission. Journal of Materials Chemistry C, 2016, 4, 1645-1650.	5.5	19
245	Tunable Metal–Organic Frameworks Based on 8â€Connected Metal Trimers for High Ethane Uptake. Small, 2021, 17, e2003167.	10.0	19
246	A New Polymorph of Lithium Zinc Phosphate with the Cristobalite-Type Framework Topology. Journal of Solid State Chemistry, 1998, 138, 126-130.	2.9	18
247	Reactions of α-amino acid-N-carboxyanhydrides (NCAs) with organometallic palladium(0) and platinum(0) compounds: structure of a metallated NCA product and its role in polypeptide synthesis. Journal of Organometallic Chemistry, 1999, 589, 111-114.	1.8	18
248	Integrating Zeolite-Type Chalcogenide with Titanium Dioxide Nanowires for Enhanced Photoelectrochemical Activity. Langmuir, 2017, 33, 13634-13639.	3.5	18
249	Transition Metal Complexes with the Proton Sponge 4,9-Dichloroquino[7,8-h]quinoline: Highly Twisted Aromatic Systems and an Extreme "Out-of-Plane―Position of the Coordinated Transition Metal Atom. Angewandte Chemie - International Edition, 2001, 40, 3182-3184.	13.8	17
250	The Boratacyclooctatetraene Ligand: An Isoelectronic Trianionic Analogue of the Cyclooctatetraene Dianion. Angewandte Chemie - International Edition, 2003, 42, 4510-4514.	13.8	17
251	Boron trifluoride activation of ethylene oligomerization and polymerization catalysts. Inorganica Chimica Acta, 2003, 345, 95-102.	2.4	17
252	Comparative Study of In Situ and Presynthesized X-Pillar Ligand in Self-Assembly of Homochiral Porous Frameworks. Crystal Growth and Design, 2015, 15, 5939-5944.	3.0	17

#	Article	IF	CITATIONS
253	The first anionic four-connected boron imidazolate framework. Dalton Transactions, 2010, 39, 2487.	3.3	16
254	Novel lamella hydrated sodium zinc arsenate with 4-connected two-dimensional nets. Chemical Communications, 1997, , 2271.	4.1	15
255	Isoreticular Three-Dimensional Kagome Metal–Organic Frameworks with Open-Nitrogen-Donor Pillars for Selective Gas Adsorption. Crystal Growth and Design, 2020, 20, 3523-3530.	3.0	15
256	Hydrogen-bonded boron imidazolate frameworks. Dalton Transactions, 2010, 39, 1702-1704.	3.3	14
257	A Tale of Two Trimers from Two Different Worlds: A COFâ€Inspired Synthetic Strategy for Poreâ€Space Partitioning of MOFs. Angewandte Chemie, 2019, 131, 6382-6386.	2.0	14
258	A 3D Open–Framework Indium Telluride and Its Selenide and Sulfide Analogues We thank UC Riverside, UC Energy Institute, and the donors of The Petroleum Research Fund (administered by the ACS) for funding Angewandte Chemie, 2002, 114, 2039.	2.0	13
259	CRYSTALLINE MICROPOROUS AND OPEN FRAMEWORK MATERIALS. , 2003, , 1-37.		13
260	Lithium cubane clusters as tetrahedral, square planar, and linear nodes for supramolecular assemblies. Dalton Transactions, 2012, 41, 3902-3905.	3.3	13
261	Polymorphic Graphene-like Cuprous Germanosulfides with a High Cu-to-Ge Ratio and Low Band Gap. Inorganic Chemistry, 2014, 53, 13207-13211.	4.0	12
262	Organization of Lithium Cubane Clusters into Three-Dimensional Porous Frameworks by Self-Penetration and Self-Polymerization. Crystal Growth and Design, 2016, 16, 6531-6536.	3.0	11
263	Continuously variable mercury-sulfur coordination in the low-dimensional organic metal (BEDT-TTF)Hg0.776(SCN)2 and its description by the bond valence sum method. Journal of the American Chemical Society, 1991, 113, 5087-5089.	13.7	10
264	BEDT-TTF-based synmetal: synthesis, structure, ESR, and electrical properties of (BEDT-TTF)Hg0.776(SCN)2. Chemistry of Materials, 1991, 3, 508-513.	6.7	10
265	Tetramethylammonium Lithium Zinc Cyanide, [N(CH3)4]LiZn(CN)4. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 14-16.	0.4	10
266	Charge-Complementary-Ligands Directed Assembly of a Lithium Dimer into a Three-Dimensional Porous Framework. Crystal Growth and Design, 2015, 15, 2550-2554.	3.0	10
267	Charge―and Sizeâ€Complementary Multimetalâ€Induced Morphology and Phase Control in Zeoliteâ€Type Metal Chalcogenides. Chemistry - A European Journal, 2018, 24, 10812-10819.	3.3	10
268	Lockâ€andâ€Key and Shapeâ€Memory Effects in an Unconventional Synthetic Path to Magnesium Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 11883-11888.	2.0	10
269	Simultaneous Control of Poreâ€5pace Partition and Charge Distribution in Multiâ€Modular Metalâ€Organic Frameworks. Angewandte Chemie, 0, ,	2.0	10
270	Electronic and molecular structure of the composite organic metal (BO)2.413. Chemistry of Materials, 1991, 3, 647-651.	6.7	9

#	Article	IF	CITATIONS
271	Design und Synthese von Materialien mit offenen Gerüsten: ein unterbrochener und ein aufgeweiteter Sodalith. Angewandte Chemie, 1995, 107, 1911-1913.	2.0	9
272	Synthesis and single crystal structure of an AFX-type magnesium aluminophosphate. Microporous and Mesoporous Materials, 2001, 50, 145-149.	4.4	9
273	Sodium Zinc Hydroxide Sulfite with a Novel Zn3OH Geometry. Inorganic Chemistry, 2006, 45, 10410-10412.	4.0	9
274	From MOFâ€74â€Zn to Triazolateâ€Directed Nonsymmetric Assembly of Chiral Zn 6 @Zn 6 Clusters. Chemistry - A European Journal, 2019, 25, 10590-10593.	3.3	9
275	A Cooperative Pillar–Template Strategy as a Generalized Synthetic Method for Flexible Homochiral Porous Frameworks. Angewandte Chemie, 2018, 130, 3799-3803.	2.0	8
276	Syntheses and crystal structures of two zeolite related structures with novel framework topologies. Microporous and Mesoporous Materials, 1998, 25, 109-117.	4.4	7
277	Tetrahedral Networks Containing Beryllium: Syntheses and Structures of Be3(PO4)2 · 2H2O and Be(HAsO4) · H2O. Journal of Solid State Chemistry, 1999, 146, 394-398.	2.9	7
278	Roles of Alkali Metals and Ionic Networks in Directing the Formation of Anionic Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 6668-6676.	3.0	7
279	Synthesis and crystal structure of feldspar analogs in beryllosilicate and aluminum–cobalt phosphate systems. Microporous and Mesoporous Materials, 1998, 23, 323-330.	4.4	6
280	Ring Closure of 1,4-Pentadiene to Cyclopentene by a Zwitterionic Nickel Catalyst. Organometallics, 2004, 23, 4174-4177.	2.3	6
281	Two‣tep Synthesis of a Novel Cd ₁₇ Sulfide Cluster through Ionic Clusters. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 2470-2472.	1.2	6
282	Homoâ€Helical Rod Packing as a Path Toward the Highest Density of Guestâ€Binding Metal Sites in Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 6316-6319.	2.0	6
283	Chiral Isocamphoric Acid: Founding a Large Family of Homochiral Porous Materials. Angewandte Chemie, 2018, 130, 7219-7223.	2.0	6
284	Bimetallic Rodâ€Packing Metal–Organic Framework Combining Two Charged Forms of 2â€Hydroxyterephthalic Acid. Chemistry - A European Journal, 2020, 26, 11146-11149.	3.3	6
285	Synthesis, characterization, and cyclometalation studies of benzo[1,2-h: 5,4-hâ€2]diquinolines with palladium and platinum. Journal of Organometallic Chemistry, 2011, 696, 3992-3997.	1.8	5
286	Perfect Statistical Symmetrization of a Heterofunctional Ligand Induced by Pseudo-Copper Trimer in an Expanded Matrix of HKUST-1. Crystal Growth and Design, 2013, 13, 5175-5178.	3.0	5
287	Multitopic ligand directed assembly of low-dimensional metal-chalcogenide organic frameworks. Dalton Transactions, 2017, 46, 1481-1486.	3.3	5
288	Highly Tunable Heterojunctions from Multimetallic Sulfide Nanoparticles and Silver Nanowires. Angewandte Chemie, 2018, 130, 5472-5476.	2.0	4

#	Article	IF	CITATIONS
289	Zeoliteâ€Type Metal Oxalate Frameworks. Angewandte Chemie, 2019, 131, 2915-2918.	2.0	4
290	Selective Crystallization of Rareâ€Earth Ions into Cationic Metalâ€Organic Frameworks for Rareâ€Earth Separation. Angewandte Chemie, 2021, 133, 11248-11252.	2.0	4
291	The Synthesis, X-ray Crystal Structure, and Molecular Structure of Rhenium Tetra- carbonylbromidetrimethylamineisocyanoborane. Inorganic Chemistry, 1999, 38, 1024-1027.	4.0	3
292	Structure of (BEDT-TTF)4[Hg2Br6].THF. Acta Crystallographica Section C: Crystal Structure Communications, 1994, 50, 23-25.	0.4	2
293	Crystalline Inorganic Materials From Supertetrahedral Chalcogenide Clusters. , 2021, , .		1
294	<title>Periodic mesoporous silica monoliths templated by liquid crystals in complex systems</title> . , 2000, , .		0
295	Cluster and Non-Cluster Based Open Framework Indium Chalcogenides. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	0
296	Pushing Up the Size Limit of Chalcogenide Supertetrahedral Clusters: Two- and Three-Dimensional Photoluminescent Open Frameworks from (Cu5In30S54)13- Clusters ChemInform, 2003, 34, no.	0.0	0
297	Synthetic Design of Crystalline Inorganic Chalcogenides Exhibiting Fast-Ion Conductivity ChemInform, 2004, 35, no.	0.0	0
298	Pentasupertetrahedral Clusters as Building Blocks for a Three-Dimensional Sulfide Superlattice ChemInform, 2004, 35, no.	0.0	0
299	Na5(In4S) (InS4)3×6H2O, a Zeolite-Like Structure with Unusual SIn4 Tetrahedra ChemInform, 2005, 36, no.	0.0	0
300	The Interface Chemistry Between Chalcogenide Clusters and Open Framework Chalcogenides. ChemInform, 2005, 36, no.	0.0	0
301	Two-Dimensional Organization of [ZnGe3S9(H2O)]4- Supertetrahedral Clusters Templated by a Metal Complex ChemInform, 2005, 36, no.	0.0	0
302	Rücktitelbild: Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction (Angew. Chem. 42/2017). Angewandte Chemie, 2017, 129, 13332-13332.	2.0	0
303	Metalâ€mediated Directionalâ€capping of Rodâ€packing Metalâ€organic Frameworks. Chemistry - A European Journal, 0, , .	3.3	0