Quoc Viet Hoang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/382937/publications.pdf

Version: 2024-02-01

		1040056	1199594	
12	336	9	12	
papers	citations	h-index	g-index	
13	13	13	574	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	High-efficiency single and tandem fullerene solar cells with asymmetric monofluorinated diketopyrrolopyrrole-based polymer. Journal of Energy Chemistry, 2022, 64, 236-245.	12.9	15
2	Modeling and implementation of tandem polymer solar cells using wideâ€bandgap front cells. , 2020, 2, 131-142.		9
3	Highly Efficient Indoor Organic Photovoltaics with Spectrally Matched Fluorinated Phenyleneâ€Alkoxybenzothiadiazoleâ€Based Wide Bandgap Polymers. Advanced Functional Materials, 2019, 29, 1901171.	14.9	69
4	High-efficiency non-halogenated solvent processable polymer/PCBM solar cells <i>via</i> fluorination-enabled optimized nanoscale morphology. Journal of Materials Chemistry A, 2019, 7, 24992-25002.	10.3	21
5	The role of cation and anion dopant incorporated into a ZnO electron transporting layer for polymer bulk heterojunction solar cells. RSC Advances, 2019, 9, 37714-37723.	3.6	5
6	High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole. Energy and Environmental Science, 2017, 10, 1443-1455.	30.8	84
7	Thiophene-benzothiadiazole based D–A ₁ –D–A ₂ type alternating copolymers for polymer solar cells. Polymer Chemistry, 2017, 8, 3622-3631.	3.9	30
8	Effects of morphology evolution on solution-processed small molecule photovoltaics via a solvent additive. Journal of Materials Chemistry C, 2017, 5, 7837-7844.	5.5	16
9	Synthesis and characterization of medium band gap polymers with phosphole[3,2-b:4,5-b′]dithiophene oxide as acceptor unit and their application for polymer photovoltaic devices. Synthetic Metals, 2016, 215, 235-242.	3.9	6
10	Low band gap diketopyrrolopyrrole-based small molecule bulk heterojunction solar cells: influence of terminal side chain on morphology and photovoltaic performance. RSC Advances, 2016, 6, 28658-28665.	3.6	10
11	Asymmetric Electron-Donating 4-Alkyl-8-alkoxybenzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene Unit for Use in High-Efficiency Bulk Heterojunction Polymer Solar Cells. Macromolecules, 2015, 48, 3918-3927.	4.8	39
12	Band gap tunable benzodithiophene-based donor-rich semi-random D–A copolymers with active layer thickness tolerance for organic solar cells. Solar Energy Materials and Solar Cells, 2015, 134, 148-156.	6.2	9