
N L Fletcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3829160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility. ACS Central Science, 2018, 4, 718-723.	11.3	181
2	Localised delivery of doxorubicin to prostate cancer cells through a PSMA-targeted hyperbranched polymer theranostic. Biomaterials, 2017, 141, 330-339.	11.4	68
3	A pH-responsive coiled-coil peptide hydrogel. Soft Matter, 2011, 7, 10210.	2.7	60
4	Overcoming Instability of Antibodyâ€Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies. Advanced Healthcare Materials, 2016, 5, 2055-2068.	7.6	52
5	Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics. Molecular Pharmaceutics, 2017, 14, 3539-3549.	4.6	45
6	Evaluation of Polymeric Nanomedicines Targeted to PSMA: Effect of Ligand on Targeting Efficiency. Biomacromolecules, 2015, 16, 3235-3247.	5.4	38
7	Modulating Targeting of Poly(ethylene glycol) Particles to Tumor Cells Using Bispecific Antibodies. Advanced Healthcare Materials, 2019, 8, e1801607.	7.6	38
8	Designed multifunctional polymeric nanomedicines: long-term biodistribution and tumour accumulation of aptamer-targeted nanomaterials. Chemical Communications, 2018, 54, 11538-11541.	4.1	37
9	Understanding the Uptake of Nanomedicines at Different Stages of Brain Cancer Using a Modular Nanocarrier Platform and Precision Bispecific Antibodies. ACS Central Science, 2020, 6, 727-738.	11.3	36
10	Engineering Fluorescent Gold Nanoclusters Using Xanthate-Functionalized Hydrophilic Polymers: Toward Enhanced Monodispersity and Stability. Nano Letters, 2021, 21, 476-484.	9.1	36
11	Ultrasound-responsive nanobubbles for enhanced intravitreal drug migration: An ex vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 102-107.	4.3	35
12	Poly(2-oxazoline) macromonomers as building blocks for functional and biocompatible polymer architectures. European Polymer Journal, 2019, 121, 109258.	5.4	34
13	Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation. ACS Applied Materials & Interfaces, 2017, 9, 41159-41167.	8.0	33
14	Controlling the Biological Fate of Micellar Nanoparticles: Balancing Stealth and Targeting. ACS Nano, 2020, 14, 13739-13753.	14.6	30
15	Understanding the role of colon-specific microparticles based on retrograded starch/pectin in the delivery of chitosan nanoparticles along the gastrointestinal tract. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 371-378.	4.3	27
16	Polynitroxide copolymers to reduce biofilm fouling on surfaces. Polymer Chemistry, 2018, 9, 5308-5318.	3.9	26
17	Targeting Nanomedicines to Prostate Cancer: Evaluation of Specificity of Ligands to Two Different Receptors In Vivo. Pharmaceutical Research, 2016, 33, 2388-2399.	3.5	24
18	Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomaterials Science, 2022, 10, 3029-3053.	5.4	24

N L Fletcher

#	Article	IF	CITATIONS
19	<i>In vivo</i> therapeutic evaluation of polymeric nanomedicines: effect of different targeting peptides on therapeutic efficacy against breast cancer. Nanotheranostics, 2018, 2, 360-370.	5.2	23
20	Influence of Charge on Hemocompatibility and Immunoreactivity of Polymeric Nanoparticles. ACS Applied Bio Materials, 2018, 1, 756-767.	4.6	23
21	Importance of Polymer Length in Fructose-Based Polymeric Micelles for an Enhanced Biological Activity. Macromolecules, 2019, 52, 477-486.	4.8	23
22	Synthesis, characterization and biological activities of semicarbazones and their copper complexes. Journal of Inorganic Biochemistry, 2016, 162, 295-308.	3.5	22
23	Fabrication and characterization of hydrogels formed from designer coiled-coil fibril-forming peptides. RSC Advances, 2017, 7, 27260-27271.	3.6	22
24	Targeted and modular architectural polymers employing bioorthogonal chemistry for quantitative therapeutic delivery. Chemical Science, 2020, 11, 3268-3280.	7.4	22
25	Modified Organosilica Core–Shell Nanoparticles for Stable pH Sensing in Biological Solutions. ACS Sensors, 2018, 3, 967-975.	7.8	21
26	Hyperbranched Poly(2-oxazoline)s and Poly(ethylene glycol): A Structure–Activity Comparison of Biodistribution. Biomacromolecules, 2020, 21, 3318-3331.	5.4	18
27	Targeted beta therapy of prostate cancer with 177Lu-labelled Miltuximab® antibody against glypican-1 (GPC-1). EJNMMI Research, 2020, 10, 46.	2.5	18
28	Nextâ€Generation Polymeric Nanomedicines for Oncology: Perspectives and Future Directions. Macromolecular Rapid Communications, 2020, 41, e2000319.	3.9	17
29	Poly(2-ethyl-2-oxazoline) bottlebrushes: How nanomaterial dimensions can influence biological interactions. European Polymer Journal, 2021, 151, 110447.	5.4	16
30	Direct Comparison of Poly(ethylene glycol) and Phosphorylcholine Drug-Loaded Nanoparticles In Vitro and In Vivo. Biomacromolecules, 2020, 21, 2320-2333.	5.4	14
31	Polymer design and component selection contribute to uptake, distribution & trafficking behaviours of polyethylene glycol hyperbranched polymers in live MDA-MB-468 breast cancer cells. Biomaterials Science, 2019, 7, 4661-4674.	5.4	13
32	Understanding nanomedicine treatment in an aggressive spontaneous brain cancer model at the stage of early blood brain barrier disruption. Biomaterials, 2022, 283, 121416.	11.4	13
33	Investigation of the Therapeutic Potential of a Synergistic Delivery System through Dual Controlled Release of Camptothecin–Doxorubicin. Advanced Therapeutics, 2020, 3, 1900202.	3.2	12
34	Oral Delivery of Multicompartment Nanomedicines for Colorectal Cancer Therapeutics: Combining Locoâ€Regional Delivery with Cellâ€Target Specificity. Advanced Therapeutics, 2020, 3, 1900171.	3.2	10
35	RNA interference to enhance radiation therapy: Targeting the DNA damage response. Cancer Letters, 2018, 439, 14-23.	7.2	9
36	Pre-targeting of polymeric nanomaterials to balance tumour accumulation and clearance. Chemical Communications, 2022, 58, 7912-7915.	4.1	9

N L Fletcher

#	Article	IF	CITATIONS
37	The Impact of Polymer Size and Cleavability on the Intravenous Pharmacokinetics of PEG-Based Hyperbranched Polymers in Rats. Nanomaterials, 2020, 10, 2452.	4.1	8
38	Synthesis of biscarboxylic acid functionalised EDTA mimicking polymers and their ability to form Zr(<scp>iv</scp>) chelation mediated nanostructures. Polymer Chemistry, 2020, 11, 2799-2810.	3.9	7
39	Characterization of the Biodistribution of a Silica Vesicle Nanovaccine Carrying a Rhipicephalus (Boophilus) microplus Protective Antigen With in vivo Live Animal Imaging. Frontiers in Bioengineering and Biotechnology, 2020, 8, 606652.	4.1	6
40	Fluorophore Selection and Incorporation Contribute to Permeation and Distribution Behaviors of Hyperbranched Polymers in Multi-Cellular Tumor Spheroids and Xenograft Tumor Models. ACS Applied Bio Materials, 2021, 4, 2675-2685.	4.6	4
41	Clinical development of an anti-GPC-1 antibody for the treatment of cancer. Expert Opinion on Biological Therapy, 2022, , 1-11.	3.1	4
42	Template-Assisted Antibody Assembly: A Versatile Approach for Engineering Functional Antibody Nanoparticles. Chemistry of Materials, 2022, 34, 3694-3704.	6.7	4
43	Effect of Chainâ€End Chemistries on the Efficiency of Coupling Antibodies to Polymers Using Unnatural Amino Acids. Macromolecular Rapid Communications, 2020, 41, e2000294.	3.9	3
44	Evaluation of the in vivo fate of ultrapure alginate in a BALB/c mouse model. Carbohydrate Polymers, 2021, 262, 117947.	10.2	3
45	Synthesis, characterisation and evaluation of hyperbranched <i>N</i> -(2-hydroxypropyl) methacrylamides for transport and delivery in pancreatic cell lines <i>in vitro</i> and <i>in vivo</i> . Biomaterials Science, 2022, 10, 2328-2344.	5.4	3
46	Investigation of a Dual siRNA/Chemotherapy Delivery System for Breast Cancer Therapy. ACS Omega, 0, ,	3.5	3
47	Development of targeted micelles and polymersomes prepared from degradable RAFT-based diblock copolymers and their potential role as nanocarriers for chemotherapeutics. Polymer Chemistry, 2022, 13, 4004-4017.	3.9	3
48	Bioproduction of highly charged designer peptide surfactants via a chemically cleavable coiled oil heteroconcatemer. Biotechnology and Bioengineering, 2015, 112, 242-251.	3.3	2
49	Targeted Nanomaterials: Overcoming Instability of Antibody-Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies (Adv. Healthcare Mater. 16/2016). Advanced Healthcare Materials, 2016, 5, 1994-1994.	7.6	2
50	Antibody-Based Formats to Target Glioblastoma: Overcoming Barriers to Protein Drug Delivery. Molecular Pharmaceutics, 2022, 19, 1233-1247.	4.6	2
51	Preclinical Imaging of siRNA Delivery. Australian Journal of Chemistry, 2016, 69, 1073.	0.9	1
52	Design-led 3D visualization of nanomedicines in virtual reality. , 2018, , .		1
53	Bacillus anthracis Protective Antigen Shows High Specificity for a UV Induced Mouse Model of Cutaneous Squamous Cell Carcinoma. Frontiers in Medicine, 2019, 6, 22.	2.6	1
54	Cyanine-5-Driven Behaviours of Hyperbranched Polymers Designed for Therapeutic Delivery Are Cell-Type Specific and Correlated with Polar Lipid Distribution in Membranes. Nanomaterials, 2021, 11, 1745.	4.1	1