
Ines Teichert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3829091/publications.pdf Version: 2024-02-01

INES TEICHEDT

#	Article	IF	CITATIONS
1	Multicolor lightâ€sheet microscopy for a large field of view imaging: A comparative study between Bessel and Gaussian lightâ€sheets configurations. Journal of Biophotonics, 2022, , e202100359.	2.3	5
2	Golden Gate vectors for efficient gene fusion and gene deletion in diverse filamentous fungi. Current Genetics, 2021, 67, 317-330.	1.7	12
3	Crosstalk Between Pheromone Signaling and NADPH Oxidase Complexes Coordinates Fungal Developmental Processes. Frontiers in Microbiology, 2020, 11, 1722.	3.5	10
4	Fungal RNA editing: who, when, and why?. Applied Microbiology and Biotechnology, 2020, 104, 5689-5695.	3.6	8
5	Sordaria macrospora: 25Âyears as a model organism for studying the molecular mechanisms of fruiting body development. Applied Microbiology and Biotechnology, 2020, 104, 3691-3704.	3.6	33
6	The STRIPAK signaling complex regulates dephosphorylation of GUL1, an RNA-binding protein that shuttles on endosomes. PLoS Genetics, 2020, 16, e1008819.	3.5	13
7	STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biological Chemistry, 2019, 400, 1005-1022.	2.5	86
8	Combination of Proteogenomics with Peptide <i>De Novo</i> Sequencing Identifies New Genes and Hidden Posttranscriptional Modifications. MBio, 2019, 10, .	4.1	40
9	The transcription factor PRO44 and the histone chaperone ASF1 regulate distinct aspects of multicellular development in the filamentous fungus Sordaria macrospora. BMC Genetics, 2018, 19, 112.	2.7	16
10	Adenosine to inosine mRNA editing in fungi and how it may relate to fungal pathogenesis. PLoS Pathogens, 2018, 14, e1007231.	4.7	14
11	A Hippo Pathway-Related GCK Controls Both Sexual and Vegetative Developmental Processes in the Fungus <i>Sordaria macrospora</i> . Genetics, 2018, 210, 137-153.	2.9	21
12	RNA Editing During Sexual Development Occurs in Distantly Related Filamentous Ascomycetes. Genome Biology and Evolution, 2017, 9, 855-868.	2.5	44
13	Nuclear dynamics during ascospore germination in Sordaria macrospora. Fungal Genetics and Biology, 2017, 98, 20-22.	2.1	5
14	New insights from an old mutant: SPADIX4 governs fruiting body development but not hyphal fusion in Sordaria macrospora. Molecular Genetics and Genomics, 2017, 292, 93-104.	2.1	13
15	Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development. MBio, 2016, 7, .	4.1	26
16	Laser capture microdissection to identify septum-associated proteins in Aspergillus nidulans. Mycologia, 2016, 108, 528-532.	1.9	1
17	Transcription factor PRO1 targets genes encoding conserved components of fungal developmental signaling pathways. Molecular Microbiology, 2016, 102, 792-809.	2.5	44
18	Dual mechanism of action of the atypical tetracycline chelocardin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 645-654.	2.3	39

INES TEICHERT

#	Article	IF	CITATIONS
19	The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi. Fungal Genetics and Biology, 2016, 90, 31-38.	2.1	55
20	A Fungal Sarcolemmal Membrane-Associated Protein (SLMAP) Homolog Plays a Fundamental Role in Development and Localizes to the Nuclear Envelope, Endoplasmic Reticulum, and Mitochondria. Eukaryotic Cell, 2015, 14, 345-358.	3.4	55
21	New Insights Into the Roles of NADPH Oxidases in Sexual Development and Ascospore Germination in <i>Sordaria macrospora</i> . Genetics, 2014, 196, 729-744.	2.9	86
22	PRO40 Is a Scaffold Protein of the Cell Wall Integrity Pathway, Linking the MAP Kinase Module to the Upstream Activator Protein Kinase C. PLoS Genetics, 2014, 10, e1004582.	3.5	64
23	The Filamentous Fungus Sordaria macrospora as a Genetic Model to Study Fruiting Body Development. Advances in Genetics, 2014, 87, 199-244.	1.8	54
24	Putting Fungi to Work: Harvesting a Cornucopia of Drugs, Toxins, and Antibiotics. PLoS Pathogens, 2014, 10, e1003950.	4.7	38
25	Tools for advanced and targeted genetic manipulation of the β-lactam antibiotic producer Acremonium chrysogenum. Journal of Biotechnology, 2014, 169, 51-62.	3.8	32
26	Whole-Genome Sequencing of <i>Sordaria macrospora</i> Mutants Identifies Developmental Genes. G3: Genes, Genomes, Genetics, 2012, 2, 261-270.	1.8	80
27	Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genomics, 2012, 13, 511.	2.8	73
28	A homologue of the human STRIPAK complex controls sexual development in fungi. Molecular Microbiology, 2012, 84, 310-323.	2.5	94
29	10 Evolution of Genes for Secondary Metabolism in Fungi. , 2011, , 231-255.		6
30	Sordaria macrospora, a model organism to study fungal cellular development. European Journal of Cell Biology, 2010, 89, 864-872.	3.6	51
31	A Mutant Defective in Sexual Development Produces Aseptate Ascogonia. Eukaryotic Cell, 2010, 9, 1856-1866.	3.4	49
32	De novo Assembly of a 40 Mb Eukaryotic Genome from Short Sequence Reads: Sordaria macrospora, a Model Organism for Fungal Morphogenesis. PLoS Genetics, 2010, 6, e1000891.	3.5	169
33	The WW Domain Protein PRO40 Is Required for Fungal Fertility and Associates with Woronin Bodies. Eukaryotic Cell, 2007, 6, 831-843.	3.4	90
34	Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete <i>Sordaria macrospora</i> . FEMS Microbiology Letters, 2007, 275, 62-70.	1.8	76
35	Detection of hyphal fusion in filamentous fungi using differently fluorescence-labeled histones. Current Genetics, 2007, 52, 259-266.	1.7	47