Ines Teichert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3829091/publications.pdf

Version: 2024-02-01

35	1,549	23 h-index	34
papers	citations		g-index
37	37	37	1292
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	De novo Assembly of a 40 Mb Eukaryotic Genome from Short Sequence Reads: Sordaria macrospora, a Model Organism for Fungal Morphogenesis. PLoS Genetics, 2010, 6, e1000891.	3.5	169
2	A homologue of the human STRIPAK complex controls sexual development in fungi. Molecular Microbiology, 2012, 84, 310-323.	2.5	94
3	The WW Domain Protein PRO40 Is Required for Fungal Fertility and Associates with Woronin Bodies. Eukaryotic Cell, 2007, 6, 831-843.	3.4	90
4	New Insights Into the Roles of NADPH Oxidases in Sexual Development and Ascospore Germination in <i>Sordaria macrospora</i> . Genetics, 2014, 196, 729-744.	2.9	86
5	STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biological Chemistry, 2019, 400, 1005-1022.	2.5	86
6	Whole-Genome Sequencing of <i>Sordaria macrospora </i> Mutants Identifies Developmental Genes. G3: Genes, Genomes, Genetics, 2012, 2, 261-270.	1.8	80
7	Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete <i>Sordaria macrospora</i> . FEMS Microbiology Letters, 2007, 275, 62-70.	1.8	76
8	Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genomics, 2012, 13, 511.	2.8	73
9	PRO40 Is a Scaffold Protein of the Cell Wall Integrity Pathway, Linking the MAP Kinase Module to the Upstream Activator Protein Kinase C. PLoS Genetics, 2014, 10, e1004582.	3.5	64
10	A Fungal Sarcolemmal Membrane-Associated Protein (SLMAP) Homolog Plays a Fundamental Role in Development and Localizes to the Nuclear Envelope, Endoplasmic Reticulum, and Mitochondria. Eukaryotic Cell, 2015, 14, 345-358.	3.4	55
11	The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi. Fungal Genetics and Biology, 2016, 90, 31-38.	2.1	55
12	The Filamentous Fungus Sordaria macrospora as a Genetic Model to Study Fruiting Body Development. Advances in Genetics, 2014, 87, 199-244.	1.8	54
13	Sordaria macrospora, a model organism to study fungal cellular development. European Journal of Cell Biology, 2010, 89, 864-872.	3. 6	51
14	A Mutant Defective in Sexual Development Produces Aseptate Ascogonia. Eukaryotic Cell, 2010, 9, 1856-1866.	3.4	49
15	Detection of hyphal fusion in filamentous fungi using differently fluorescence-labeled histones. Current Genetics, 2007, 52, 259-266.	1.7	47
16	Transcription factor PRO1 targets genes encoding conserved components of fungal developmental signaling pathways. Molecular Microbiology, 2016, 102, 792-809.	2.5	44
17	RNA Editing During Sexual Development Occurs in Distantly Related Filamentous Ascomycetes. Genome Biology and Evolution, 2017, 9, 855-868.	2.5	44
18	Combination of Proteogenomics with Peptide $\langle i \rangle$ De Novo $\langle i \rangle$ Sequencing Identifies New Genes and Hidden Posttranscriptional Modifications. MBio, 2019, 10, .	4.1	40

#	Article	IF	Citations
19	Dual mechanism of action of the atypical tetracycline chelocardin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 645-654.	2.3	39
20	Putting Fungi to Work: Harvesting a Cornucopia of Drugs, Toxins, and Antibiotics. PLoS Pathogens, 2014, 10, e1003950.	4.7	38
21	Sordaria macrospora: 25Âyears as a model organism for studying the molecular mechanisms of fruiting body development. Applied Microbiology and Biotechnology, 2020, 104, 3691-3704.	3.6	33
22	Tools for advanced and targeted genetic manipulation of the \hat{l}^2 -lactam antibiotic producer Acremonium chrysogenum. Journal of Biotechnology, 2014, 169, 51-62.	3.8	32
23	Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development. MBio, 2016, 7, .	4.1	26
24	A Hippo Pathway-Related GCK Controls Both Sexual and Vegetative Developmental Processes in the Fungus <i>Sordaria macrospora </i> <io>li>. Genetics, 2018, 210, 137-153.</io>	2.9	21
25	The transcription factor PRO44 and the histone chaperone ASF1 regulate distinct aspects of multicellular development in the filamentous fungus Sordaria macrospora. BMC Genetics, 2018, 19, 112.	2.7	16
26	Adenosine to inosine mRNA editing in fungi and how it may relate to fungal pathogenesis. PLoS Pathogens, 2018, 14, e1007231.	4.7	14
27	New insights from an old mutant: SPADIX4 governs fruiting body development but not hyphal fusion in Sordaria macrospora. Molecular Genetics and Genomics, 2017, 292, 93-104.	2.1	13
28	The STRIPAK signaling complex regulates dephosphorylation of GUL1, an RNA-binding protein that shuttles on endosomes. PLoS Genetics, 2020, 16, e1008819.	3.5	13
29	Golden Gate vectors for efficient gene fusion and gene deletion in diverse filamentous fungi. Current Genetics, 2021, 67, 317-330.	1.7	12
30	Crosstalk Between Pheromone Signaling and NADPH Oxidase Complexes Coordinates Fungal Developmental Processes. Frontiers in Microbiology, 2020, 11, 1722.	3 . 5	10
31	Fungal RNA editing: who, when, and why?. Applied Microbiology and Biotechnology, 2020, 104, 5689-5695.	3.6	8
32	10 Evolution of Genes for Secondary Metabolism in Fungi. , 2011, , 231-255.		6
33	Nuclear dynamics during ascospore germination in Sordaria macrospora. Fungal Genetics and Biology, 2017, 98, 20-22.	2.1	5
34	Multicolor lightâ€sheet microscopy for a large field of view imaging: A comparative study between Bessel and Gaussian lightâ€sheets configurations. Journal of Biophotonics, 2022, , e202100359.	2.3	5
35	Laser capture microdissection to identify septum-associated proteins in Aspergillus nidulans. Mycologia, 2016, 108, 528-532.	1.9	1