Peter M Shearer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3828649/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tidal modulation of seismicity at the Coso geothermal field. Earth and Planetary Science Letters, 2022, 579, 117335.	1.8	11
2	Likely Pâ€ŧoâ€S Conversion at the Coreâ€Mantle Boundary Extracted From Array Processing of Noise Records. Geophysical Research Letters, 2022, 49, .	1.5	1
3	Improved Stress Drop Estimates for M 1.5 to 4 Earthquakes in Southern California From 1996 to 2019. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	8
4	Comprehensive Highâ€Precision Relocation of Seismicity on the Island of Hawaiâ€~i 1986–2018. Earth and Space Science, 2021, 8, e2020EA001253.	1.1	9
5	Calibrating Spectral Decomposition of Local Earthquakes Using Borehole Seismic Records—Results for the 1992 Big Bear Aftershocks in Southern California. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020561.	1.4	6
6	Complicated Lithospheric Structure Beneath the Contiguous US Revealed by Teleseismic Sâ€Reflections. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021624.	1.4	15
7	Does Earthquake Stress Drop Increase With Depth in the Crust?. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022314.	1.4	25
8	Spatiotemporal Variations of Focal Mechanism and In Situ <i>V</i> _{<i>p</i>} / <i>V</i> V _{<i>s</i>} Ratio During the 2018 Kīlauea Eruption. Geophysical Research Letters, 2021, 48, e2021GL094636.	1.5	4
9	Global variations of Earth's 520- and 560-km discontinuities. Earth and Planetary Science Letters, 2020, 552, 116600.	1.8	15
10	Oceanic plateau of the Hawaiian mantle plume head subducted to the uppermost lower mantle. Science, 2020, 370, 983-987.	6.0	18
11	Abundant Spontaneous and Dynamically Triggered Submarine Landslides in the Gulf of Mexico. Geophysical Research Letters, 2020, 47, e2020GL087213.	1.5	19
12	Imaging Upperâ€Mantle Structure Under USArray Using Longâ€Period Reflection Seismology. Journal of Geophysical Research: Solid Earth, 2019, 124, 9638-9652.	1.4	15
13	Mantle earthquakes in the Himalayan collision zone. Geology, 2019, 47, 815-819.	2.0	20
14	Searching for hidden earthquakes in Southern California. Science, 2019, 364, 767-771.	6.0	212
15	Comparing EGF Methods for Estimating Corner Frequency and Stress Drop From <i>P</i> Wave Spectra. Journal of Geophysical Research: Solid Earth, 2019, 124, 3966-3986.	1.4	69
16	An Improved Method to Determine Codaâ€ <i>Q</i> , Earthquake Magnitude, and Site Amplification: Theory and Application to Southern California. Journal of Geophysical Research: Solid Earth, 2019, 124, 578-598.	1.4	14
17	Strong Correlation between Stress Drop and Peak Ground Acceleration for Recent MÂ1–4 Earthquakes in the San Francisco Bay Area. Bulletin of the Seismological Society of America, 2018, 108, 929-945.	1.1	70
18	<i>S</i> â€ŧoâ€Rayleigh Wave Scattering From the Continental Margin Observed at USArray. Geophysical Research Letters, 2018, 45, 4719-4724.	1.5	8

#	Article	IF	CITATIONS
19	Afterslip Enhanced Aftershock Activity During the 2017 Earthquake Sequence Near Sulphur Peak, Idaho. Geophysical Research Letters, 2018, 45, 5352-5361.	1.5	21
20	Coherent Seismic Arrivals in the <i>P</i> Wave Coda of the 2012 <i>M_w</i> 7.2 Sumatra Earthquake: Water Reverberations or an Early Aftershock?. Journal of Geophysical Research: Solid Earth, 2018, 123, 3147-3159.	1.4	13
21	GrowClust: A Hierarchical Clustering Algorithm for Relative Earthquake Relocation, with Application to the Spanish Springs and Sheldon, Nevada, Earthquake Sequences. Seismological Research Letters, 2017, 88, 379-391.	0.8	165
22	Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network. Journal of Geophysical Research: Solid Earth, 2017, 122, 2946-2971.	1.4	43
23	Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California. Journal of Geophysical Research: Solid Earth, 2017, 122, 2890-2910.	1.4	61
24	Uppermost mantle seismic velocity structure beneath USArray. Journal of Geophysical Research: Solid Earth, 2017, 122, 436-448.	1.4	60
25	Source Spectral Properties of Small to Moderate Earthquakes in Southern Kansas. Journal of Geophysical Research: Solid Earth, 2017, 122, 8021-8034.	1.4	44
26	Rupture evolution of the 2006 Java tsunami earthquake and the possible role of splay faults. Tectonophysics, 2017, 721, 143-150.	0.9	28
27	Using direct and coda wave envelopes to resolve the scattering and intrinsic attenuation structure of Southern California. Journal of Geophysical Research: Solid Earth, 2017, 122, 7236-7251.	1.4	21
28	Investigation of Backprojection Uncertainties With <i>M6</i> Earthquakes. Journal of Geophysical Research: Solid Earth, 2017, 122, 7966-7986.	1.4	28
29	A sporadic lowâ€velocity layer atop the 410Âkm discontinuity beneath the Pacific Ocean. Journal of Geophysical Research: Solid Earth, 2017, 122, 5144-5159.	1.4	38
30	A comparison of longâ€ŧerm changes in seismicity at The Geysers, Salton Sea, and Coso geothermal fields. Journal of Geophysical Research: Solid Earth, 2016, 121, 225-247.	1.4	36
31	On the frequency dependence and spatial coherence of <i>PKP</i> precursor amplitudes. Journal of Geophysical Research: Solid Earth, 2016, 121, 1873-1889.	1.4	17
32	Standards for Documenting Finiteâ€Fault Earthquake Rupture Models. Seismological Research Letters, 2016, 87, 712-718.	0.8	10
33	Local near instantaneously dynamically triggered aftershocks of large earthquakes. Science, 2016, 353, 1133-1136.	6.0	55
34	New perspectives on selfâ€similarity for shallow thrust earthquakes. Journal of Geophysical Research: Solid Earth, 2016, 121, 6533-6565.	1.4	87
35	Scattered energy from a rough coreâ€mantle boundary modeled by a Monte Carlo seismic particle method: Application to PKKP precursors. Geophysical Research Letters, 2016, 43, 7963-7972.	1.5	10
36	Multiple branching rupture of the 2009 Tongaâ€ S amoa earthquake. Journal of Geophysical Research: Solid Earth, 2016, 121, 5809-5827.	1.4	22

#	Article	IF	CITATIONS
37	Characterizing Earthquake Location Uncertainty in North America Using Source–Receiver Reciprocity and USArray. Bulletin of the Seismological Society of America, 2016, 106, 2395-2401.	1.1	7
38	Fault interactions and triggering during the 10 January 2012 <i>M</i>_{<i>w</i>} 7.2 Sumatra earthquake. Geophysical Research Letters, 2016, 43, 1934-1942.	1.5	18
39	Slip segmentation and slow rupture to the trench during the 2015, <i>M_w</i> 8.3 Illapel, Chile earthquake. Geophysical Research Letters, 2016, 43, 961-966.	1.5	141
40	Constraints on the heterogeneity spectrum of Earth's upper mantle. Journal of Geophysical Research: Solid Earth, 2016, 121, 3703-3721.	1.4	18
41	A new method to identify earthquake swarms applied to seismicity near the San Jacinto Fault, California. Geophysical Journal International, 2016, 205, 995-1005.	1.0	24
42	Analysis of Foreshock Sequences in California and Implications for Earthquake Triggering. Pure and Applied Geophysics, 2016, 173, 133-152.	0.8	29
43	Source mechanism of small longâ€period events at Mount St. Helens in July 2005 using template matching, phaseâ€weighted stacking, and fullâ€waveform inversion. Journal of Geophysical Research: Solid Earth, 2015, 120, 6351-6364.	1.4	27
44	<i>T</i> phase observations in global seismogram stacks. Geophysical Research Letters, 2015, 42, 6607-6613.	1.5	17
45	Possible seasonality in large deepâ€focus earthquakes. Geophysical Research Letters, 2015, 42, 7366-7373.	1.5	11
46	Seismic tomography of compressional wave attenuation structure for Kı̄lauea Volcano, Hawaiâ€~i. Journal of Geophysical Research: Solid Earth, 2015, 120, 2510-2524.	1.4	15
47	Variability of seismic source spectra, estimated stress drop, and radiated energy, derived from cohesiveâ€zone models of symmetrical and asymmetrical circular and elliptical ruptures. Journal of Geophysical Research: Solid Earth, 2015, 120, 1053-1079.	1.4	134
48	Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic <i>P</i> waves. Geophysical Research Letters, 2015, 42, 5744-5752.	1.5	141
49	Location and size of the shallow magma reservoir beneath Kīlauea caldera, constraints from nearâ€source <i>V</i> _{<i>p</i>} / <i>V</i> _{<i>s</i>} ratios. Geophysical Research Letters, 2015, 42, 8349-8357.	1.5	18
50	Dynamics of the 2015 <i>M</i> 7.8 Nepal earthquake. Geophysical Research Letters, 2015, 42, 7467-7475.	1.5	51
51	Supershear rupture in the 24 May 2013 M w 6.7 Okhotsk deep earthquake: Additional evidence from regional seismic stations. Geophysical Research Letters, 2015, 42, 7941-7948.	1.5	7
52	Stress-drop heterogeneity within tectonically complex regions: a case study of San Gorgonio Pass, southern California. Geophysical Journal International, 2015, 202, 514-528.	1.0	44
53	Seismic Detections of Small-Scale Heterogeneities in the Deep Earth. , 2015, , 367-390.		11
54	No clear evidence for localized tidal periodicities in earthquakes in the central Japan region. Journal of Geophysical Research: Solid Earth, 2015, 120, 6317-6328.	1.4	27

#	Article	IF	CITATIONS
55	Kinematic earthquake rupture inversion in the frequency domain. Geophysical Journal International, 2014, 199, 1138-1160.	1.0	18
56	Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophysical Journal International, 2014, 197, 1002-1015.	1.0	137
57	Threeâ€dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography. Journal of Geophysical Research: Solid Earth, 2014, 119, 4377-4392.	1.4	79
58	An introduction to the special issue of Earth and Planetary Science Letters on USArray science. Earth and Planetary Science Letters, 2014, 402, 1-5.	1.8	16
59	Stress drop variations among small earthquakes before the 2011 Tohokuâ€oki, Japan, earthquake and implications for the main shock. Journal of Geophysical Research: Solid Earth, 2014, 119, 7164-7174.	1.4	45
60	Supershear rupture in a <i>M</i> _w 6.7 aftershock of the 2013 Sea of Okhotsk earthquake. Science, 2014, 345, 204-207.	6.0	54
61	Anisotropy and <i>Vp</i> / <i>Vs</i> in the uppermost mantle beneath the western United States from joint analysis of <i>Pn</i> and <i>Sn</i> phases. Journal of Geophysical Research: Solid Earth, 2014, 119, 1200-1219.	1.4	27
62	Highâ€precision relocation of longâ€period events beneath the summit region of Kı̄lauea Volcano, Hawai†i, from 1986 to 2009. Geophysical Research Letters, 2014, 41, 3413-3421.	1.5	30
63	Seismic imaging of melt in a displaced HawaiianÂplume. Nature Geoscience, 2013, 6, 657-660.	5.4	78
64	Rupture directivity of small earthquakes at Parkfield. Journal of Geophysical Research: Solid Earth, 2013, 118, 212-221.	1.4	64
65	Report on the August 2012 Brawley Earthquake Swarm in Imperial Valley, Southern California. Seismological Research Letters, 2013, 84, 177-189.	0.8	48
66	California foreshock sequences suggest aseismic triggering process. Geophysical Research Letters, 2013, 40, 2602-2607.	1.5	86
67	Spatioâ€ŧemporal distribution of fault slip and highâ€∮requency radiation of the 2010 El Mayorâ€Cucapah, Mexico earthquake. Journal of Geophysical Research: Solid Earth, 2013, 118, 1546-1555.	1.4	35
68	Reply to comment by S. Hainzl on "Selfâ€similar earthquake triggering, BÃ¥th's Law, and foreshock/aftershock magnitudes: Simulations, theory and results for southern California― Journal of Geophysical Research: Solid Earth, 2013, 118, 1192-1192.	1.4	5
69	Systematic relocation of seismicity on Hawaii Island from 1992 to 2009 using waveform cross correlation and cluster analysis. Journal of Geophysical Research: Solid Earth, 2013, 118, 2275-2288.	1.4	54
70	Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4512-4517.	3.3	71
71	Reconciling discrepancies among estimates of small-scale mantle heterogeneity from PKP precursors. Geophysical Journal International, 2013, 195, 1721-1729.	1.0	36
72	<i>Sn</i> propagation in the Western United States from common midpoint stacks of USArray data. Geophysical Research Letters, 2013, 40, 6106-6111.	1.5	6

#	Article	IF	CITATIONS
73	Tsai Receives 2012 Keiiti Aki Young Scientist Award: Citation. Eos, 2013, 94, 403-403.	0.1	Ο
74	Nyblade Receives 2012 Paul G. Silver Award for Outstanding Scientific Service: Citation. Eos, 2013, 94, 402-402.	0.1	0
75	Seismic Models of the Earth. AGU Reference Shelf, 2013, , 88-103.	0.6	9
76	Waveform Relocated Earthquake Catalog for Southern California (1981 to June 2011). Bulletin of the Seismological Society of America, 2012, 102, 2239-2244.	1.1	346
77	Computing a Large Refined Catalog of Focal Mechanisms for Southern California (1981-2010): Temporal Stability of the Style of Faulting. Bulletin of the Seismological Society of America, 2012, 102, 1179-1194.	1.1	152
78	Temporal Stability of Coda Q-1 in Southern California. Bulletin of the Seismological Society of America, 2012, 102, 873-877.	1.1	1
79	Microseisms and hum from ocean surface gravity waves. Journal of Geophysical Research, 2012, 117, .	3.3	62
80	Global risk of big earthquakes has not recently increased. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 717-721.	3.3	67
81	Selfâ€similar earthquake triggering, BÃ¥th's law, and foreshock/aftershock magnitudes: Simulations, theory, and results for southern California. Journal of Geophysical Research, 2012, 117, .	3.3	58
82	Spaceâ€ŧime clustering of seismicity in California and the distance dependence of earthquake triggering. Journal of Geophysical Research, 2012, 117, .	3.3	37
83	Spatial migration of earthquakes within seismic clusters in Southern California: Evidence for fluid diffusion. Journal of Geophysical Research, 2012, 117, .	3.3	94
84	Fichtner receives 2011 Keiiti Aki Young Scientist Award: Citation. Eos, 2012, 93, 137-137.	0.1	0
85	Localized imaging of the uppermost mantle with USArray Pn data. Journal of Geophysical Research, 2012, 117, .	3.3	17
86	Subevent location and rupture imaging using iterative backprojection for the 2011 Tohoku Mw 9.0 earthquake. Geophysical Journal International, 2012, 190, 1152-1168.	1.0	51
87	Stress-induced upper crustal anisotropy in southern California. Journal of Geophysical Research, 2011, 116, .	3.3	35
88	Insights into the mechanism of intermediate-depth earthquakes from source properties as imaged by back projection of multiple seismic phases. Journal of Geophysical Research, 2011, 116, .	3.3	48
89	Imaging the lithosphere-asthenosphere boundary beneath the Pacific using <i>SS</i> waveform modeling. Journal of Geophysical Research, 2011, 116, .	3.3	86
90	Locking depths estimated from geodesy and seismology along the San Andreas Fault System: Implications for seismic moment release. Journal of Geophysical Research, 2011, 116, .	3.3	91

#	Article	IF	CITATIONS
91	Cascadia tremor spectra: Low corner frequencies and earthquake-like high-frequency falloff. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	24
92	Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: Frequency-dependent rupture modes. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	120
93	Seventeen Antarctic seismic events detected by global surface waves and a possible link to calving events from satellite images. Journal of Geophysical Research, 2011, 116, .	3.3	26
94	Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California. Journal of Geophysical Research, 2011, 116, .	3.3	92
95	Scattered P'P' Waves Observed at Short Distances. Bulletin of the Seismological Society of America, 2011, 101, 2843-2854.	1.1	11
96	The 3 August 2009 Mw 6.9 Canal de Ballenas Region, Gulf of California, Earthquake and Its Aftershocks. Bulletin of the Seismological Society of America, 2011, 101, 929-939.	1.1	18
97	On the visibility of the inner-core shear wave phase PKJKP at long periods. Geophysical Journal International, 2011, 185, 1379-1383.	1.0	23
98	Quantifying Seismic Source Parameter Uncertainties. Bulletin of the Seismological Society of America, 2011, 101, 535-543.	1.1	36
99	A California Statewide Three-Dimensional Seismic Velocity Model from Both Absolute and Differential Times. Bulletin of the Seismological Society of America, 2010, 100, 225-240.	1.1	71
100	Scattered wave imaging of the lithosphere–asthenosphere boundary. Lithos, 2010, 120, 173-185.	0.6	71
101	Resolving crustal thickness using SS waveform stacks. Geophysical Journal International, 2010, 180, 1128-1137.	1.0	20
102	Lessons Learned from the 2004 Sumatra-Andaman Megathrust Rupture. Annual Review of Earth and Planetary Sciences, 2010, 38, 103-131.	4.6	93
103	Pn tomography of the western United States using USArray. Journal of Geophysical Research, 2010, 115,	3.3	57
104	The Long-Lasting Aftershock Series of the 3 May 1887 Mw 7.5 Sonora Earthquake in the Mexican Basin and Range Province. Bulletin of the Seismological Society of America, 2010, 100, 1153-1164.	1.1	19
105	Resolving P-wave travel-time anomalies using seismic array observations of oceanic storms. Earth and Planetary Science Letters, 2010, 292, 419-427.	1.8	39
106	Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology, 2009, 37, 315-318.	2.0	222
107	Highâ€frequency Pâ€wave seismic noise driven by ocean winds. Geophysical Research Letters, 2009, 36, .	1.5	48
108	Evidence for waterâ€filled cracks in earthquake source regions. Geophysical Research Letters, 2009, 36, .	1.5	59

#	Article	IF	CITATIONS
109	A Global View of the Lithosphere-Asthenosphere Boundary. Science, 2009, 324, 495-498.	6.0	344
110	Illuminating the nearâ€sonic rupture velocities of the intracontinental Kokoxili <i>M</i> _{<i>w</i>} 7.8 and Denali fault <i>M</i> _{<i>w</i>} 7.9 strikeâ€slip earthquakes with global P wave back projection imaging. Journal of Geophysical Research, 2009, 114, .	3.3	85
111	Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research, 2009, 114, .	3.3	584
112	Evidence for Mogi doughnut behavior in seismicity preceding small earthquakes in southern California. Journal of Geophysical Research, 2009, 114, .	3.3	16
113	Imaging mantle transition zone thickness with <i>SdS</i> - <i>SS</i> finite-frequency sensitivity kernels. Geophysical Journal International, 2008, 174, 143-158.	1.0	91
114	Determination and analysis of long-wavelength transition zone structure using <i>SS</i> precursors. Geophysical Journal International, 2008, 174, 178-194.	1.0	95
115	Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophysical Journal International, 2008, 174, 195-212.	1.0	251
116	Innerâ€core fineâ€scale structure from scattered waves recorded by LASA. Journal of Geophysical Research, 2008, 113, .	3.3	25
117	Mantle <i>Q</i> structure from <i>S</i> â€ <i>P</i> differential attenuation measurements. Journal of Geophysical Research, 2008, 113, .	3.3	7
118	Clobal P, PP, and PKP wave microseisms observed from distant storms. Geophysical Research Letters, 2008, 35, .	1.5	138
119	Methods for determining infrasound phase velocity direction with an array of line sensors. Journal of the Acoustical Society of America, 2008, 124, 2090-2099.	0.5	10
120	Chapter 6 Observing and Modeling Elastic Scattering in the Deep Earth. Advances in Geophysics, 2008, , 167-193.	1.1	30
121	Spectral Discrimination between Quarry Blasts and Earthquakes in Southern California. Bulletin of the Seismological Society of America, 2008, 98, 2073-2079.	1.1	62
122	A Search for Temporal Variations in Station Terms in Southern California from 1984 to 2002. Bulletin of the Seismological Society of America, 2008, 98, 2118-2132.	1.1	3
123	Community Fault Model (CFM) for Southern California. Bulletin of the Seismological Society of America, 2007, 97, 1793-1802.	1.1	188
124	A High-Frequency Secondary Event During the 2004 Parkfield Earthquake. Science, 2007, 318, 1279-1283.	6.0	63
125	Estimating Local Vp/Vs Ratios within Similar Earthquake Clusters. Bulletin of the Seismological Society of America, 2007, 97, 379-388.	1.1	46
126	Temporal and spatial properties of some deep moonquake clusters. Journal of Geophysical Research, 2007, 112, .	3.3	39

Peter M Shearer

#	Article	IF	CITATIONS
127	Spatial and temporal stress drop variations in small earthquakes near Parkfield, California. Journal of Geophysical Research, 2007, 112, .	3.3	168
128	Seismically active wedge structure beneath the Coalinga anticline, San Joaquin basin, California. Journal of Geophysical Research, 2007, 112, .	3.3	34
129	Teleseismic <i>P</i> wave imaging of the 26 December 2004 Sumatraâ€Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hiâ€net array. Journal of Geophysical Research, 2007, 112, .	3.3	111
130	A threeâ€dimensional crustal seismic velocity model for southern California from a composite event method. Journal of Geophysical Research, 2007, 112, .	3.3	62
131	Applying a threeâ€dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005. Journal of Geophysical Research, 2007, 112, .	3.3	166
132	Confidence intervals for earthquake source parameters. Geophysical Journal International, 2007, 168, 1227-1234.	1.0	62
133	Reply to comment by A. Douglas on â€~Systematic determination of earthquake rupture directivity and fault planes from analysis of long-periodP-wave spectra'. Geophysical Journal International, 2007, 169, 506-506.	1.0	0
134	Uncertainties in earthquake source spectrum estimation using empirical Green functions. Geophysical Monograph Series, 2006, , 69-74.	0.1	23
135	Attenuation models (QPandQS) in three dimensions of the southern California crust: Inferred fluid saturation at seismogenic depths. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	119
136	A global study of transition zone thickness using receiver functions. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	139
137	Comprehensive analysis of earthquake source spectra in southern California. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	259
138	A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	248
139	Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	49
140	Mapping attenuation beneath North America using waveform cross-correlation and cluster analysis. Geophysical Research Letters, 2006, 33, .	1.5	26
141	Infrasound events detected with the Southern California Seismic Network. Geophysical Research Letters, 2006, 33, .	1.5	22
142	Obtaining Absolute Locations for Quarry Seismicity Using Remote Sensing Data. Bulletin of the Seismological Society of America, 2006, 96, 722-728.	1.1	10
143	Crustal earthquake bursts in California and Japan: Their patterns and relation to volcanoes. Geophysical Research Letters, 2006, 33, .	1.5	58
144	Systematic determination of earthquake rupture directivity and fault planes from analysis of long-periodP-wave spectra. Geophysical Journal International, 2006, 164, 46-62.	1.0	25

#	Article	IF	CITATIONS
145	The COMPLOC Earthquake Location Package. Seismological Research Letters, 2006, 77, 440-444.	0.8	15
146	Southern California Hypocenter Relocation with Waveform Cross-Correlation, Part 1: Results Using the Double-Difference Method. Bulletin of the Seismological Society of America, 2005, 95, 896-903.	1.1	142
147	Using the Effects of Depth Phases on P-wave Spectra to Determine Earthquake Depths. Bulletin of the Seismological Society of America, 2005, 95, 173-184.	1.1	9
148	Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature, 2005, 435, 933-936.	13.7	574
149	Southern California Hypocenter Relocation with Waveform Cross-Correlation, Part 2: Results Using Source-Specific Station Terms and Cluster Analysis. Bulletin of the Seismological Society of America, 2005, 95, 904-915.	1.1	186
150	Tests of relative earthquake location techniques using synthetic data. Journal of Geophysical Research, 2005, 110, .	3.3	53
151	Rupture details of the 28 March 2005 Sumatra Mw8.6 earthquake imaged with teleseismicPwaves. Geophysical Research Letters, 2005, 32, .	1.5	88
152	New events discovered in the Apollo lunar seismic data. Journal of Geophysical Research, 2005, 110, .	3.3	36
153	The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophysical Journal International, 2004, 158, 1103-1117.	1.0	109
154	Characteristics of deep (≥13 km) Hawaiian earthquakes and Hawaiian earthquakes west of 155.55°W. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	1.0	36
155	Seafloor seismic monitoring of an active submarine volcano: Local seismicity at Vailulu'u Seamount, Samoa. Geochemistry, Geophysics, Geosystems, 2004, 5, .	1.0	15
156	Earthquake source scaling and self-similarity estimation from stackingPandSspectra. Journal of Geophysical Research, 2004, 109, .	3.3	170
157	Activity of the Offshore Newport-Inglewood Rose Canyon Fault Zone, Coastal Southern California, from Relocated Microseismicity. Bulletin of the Seismological Society of America, 2004, 94, 747-752.	1.1	43
158	Analysis of similar event clusters in aftershocks of the 1994 Northridge, California, earthquake. Journal of Geophysical Research, 2003, 108, .	3.3	67
159	Mantle Fault Zone Beneath Kilauea Volcano, Hawaii. Science, 2003, 300, 478-480.	6.0	61
160	Using S/P Amplitude Ratios to Constrain the Focal Mechanisms of Small Earthquakes. Bulletin of the Seismological Society of America, 2003, 93, 2434-2444.	1.1	247
161	Deformation on Nearby Faults Induced by the 1999 Hector Mine Earthquake. Science, 2002, 297, 1858-1862.	6.0	171
162	A New Method for Determining First-Motion Focal Mechanisms. Bulletin of the Seismological Society of America, 2002, 92, 2264-2276.	1.1	436

#	Article	IF	CITATIONS
163	Correction to "An analysis of large-scale variations in small-scale mantle heterogeneity using Global Seismographic Network recordings of precursors to PKP―By Michael A. H. Hedlin and Peter M. Shearer. Journal of Geophysical Research, 2002, 107, ESE 5-1-ESE 5-1.	3.3	0
164	Mapping lateral variations in upper mantle attenuation by stackingPandPPspectra. Journal of Geophysical Research, 2002, 107, ESE 6-1-ESE 6-11.	3.3	54
165	Parallel fault strands at 9-km depth resolved on the Imperial Fault, Southern California. Geophysical Research Letters, 2002, 29, 19-1-19-4.	1.5	40
166	Probing mid-mantle heterogeneity using PKP coda waves. Physics of the Earth and Planetary Interiors, 2002, 130, 195-208.	0.7	20
167	Upper mantle anisotropy from long-periodPpolarization. Journal of Geophysical Research, 2001, 106, 21917-21934.	3.3	72
168	Seismic wave observations with the Global Positioning System. Journal of Geophysical Research, 2001, 106, 21897-21916.	3.3	103
169	Improving Global Seismic Event Locations Using Source-Receiver Reciprocity. Bulletin of the Seismological Society of America, 2001, 91, 594-603.	1.1	7
170	Distribution of Fine-Scale Mantle Heterogeneity from Observations of Pdiff Coda. Bulletin of the Seismological Society of America, 2001, 91, 1875-1881.	1.1	23
171	Upper mantle seismic discontinuities. Geophysical Monograph Series, 2000, , 115-131.	0.1	67
172	Earthquake Locations in the Inner Continental Borderland, Offshore Southern California. Bulletin of the Seismological Society of America, 2000, 90, 425-449.	1.1	44
173	Earthquake locations in southern California obtained using source-specific station terms. Journal of Geophysical Research, 2000, 105, 10939-10960.	3.3	156
174	An analysis of large-scale variations in small-scale mantle heterogeneity using Global Seismographic Network recordings of precursors toPKP. Journal of Geophysical Research, 2000, 105, 13655-13673.	3.3	102
175	Seismic migration processing ofP-SVconverted phases for mantle discontinuity structure beneath the Snake River Plain, western United States. Journal of Geophysical Research, 2000, 105, 19055-19065.	3.3	76
176	Investigating the frequency dependence of mantleQby stackingPandPPspectra. Journal of Geophysical Research, 2000, 105, 25391-25402.	3.3	34
177	Precise relocations and stress change calculations for the Upland earthquake sequence in southern California. Journal of Geophysical Research, 2000, 105, 2937-2953.	3.3	34
178	An Elusive Blind-Thrust Fault Beneath Metropolitan Los Angeles. Science, 1999, 283, 1516-1518.	6.0	136
179	Seismic Velocity and Density Jumps Across the 410- and 660-Kilometer Discontinuities. Science, 1999, 285, 1545-1548.	6.0	153
180	Experiments in migration processing of SS precursor data to image upper mantle discontinuity structure. Journal of Geophysical Research, 1999, 104, 7229-7242.	3.3	59

#	Article	IF	CITATIONS
181	A map of topography on the 410-km discontinuity from PP precursors. Geophysical Research Letters, 1999, 26, 549-552.	1.5	77
182	observations of high-frequency scattered energy associated with the core PhasePKKP. Geophysical Research Letters, 1998, 25, 405-408.	1.5	26
183	Global mapping of topography on transition zone velocity discontinuities by stackingSSprecursors. Journal of Geophysical Research, 1998, 103, 2673-2692.	3.3	402
184	Topography on the 410-km seismic velocity discontinuity near subduction zones from stacking ofsS,sP, andpPprecursors. Journal of Geophysical Research, 1998, 103, 21165-21182.	3.3	49
185	PKP and PKKP precursor observations: Implications for the small-scale structure of the deep mantle and core. Geodynamic Series, 1998, , 37-55.	0.1	29
186	Evidence from a cluster of small earthquakes for a fault at 18 km depth beneath Oak Ridge, southern California. Bulletin of the Seismological Society of America, 1998, 88, 1327-1336.	1.1	41
187	Estimating crustal thickness in southern California by stackingPmParrivals. Journal of Geophysical Research, 1997, 102, 15211-15224.	3.3	47
188	Observations of PKKP Precursors Used to Estimate Small-Scale Topography on the Core-Mantle Boundary. Science, 1997, 277, 667-670.	6.0	66
189	Improving local earthquake locations using the L1 norm and waveform cross correlation: Application to the Whittier Narrows, California, aftershock sequence. Journal of Geophysical Research, 1997, 102, 8269-8283.	3.3	288
190	Seismic evidence for small-scale heterogeneity throughout the Earth's mantle. Nature, 1997, 387, 145-150.	13.7	165
191	Transition zone velocity gradients and the 520-km discontinuity. Journal of Geophysical Research, 1996, 101, 3053-3066.	3.3	111
192	Global lateral variations of shear wave attenuation in the upper mantle. Journal of Geophysical Research, 1996, 101, 22273-22289.	3.3	90
193	Seismic studies of the upper mantle and transition zone. Reviews of Geophysics, 1995, 33, 321.	9.0	2
194	On the structure of the lowermost mantle beneath the southwest Pacific, southeast Asia and Australasia. Physics of the Earth and Planetary Interiors, 1995, 92, 85-98.	0.7	20
195	Constraints on temporal variations in velocity near Anza, California, from analysis of similar event pairs. Bulletin of the Seismological Society of America, 1995, 85, 194-206.	1.1	35
196	Imaging Earth's seismic response at long periods. Eos, 1994, 75, 449.	0.1	26
197	Lateral variations in Dâ \in ³ thickness from long-period shear wave data. Journal of Geophysical Research, 1994, 99, 11575-11590.	3.3	122
198	Global seismic event detection using a matched filter on long-period seismograms. Journal of Geophysical Research, 1994, 99, 13713-13725.	3.3	79

#	Article	IF	CITATIONS
199	Constraints on inner core anisotropy from PKP(DF) travel times. Journal of Geophysical Research, 1994, 99, 19647-19659.	3.3	113
200	Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America, 1994, 84, 366-376.	1.1	268
201	Seismic constraints on mantle flow and topography of the 660-km discontinuity: evidence for whole-mantle convection. Nature, 1993, 365, 506-511.	13.7	67
202	Inner Core Attenuation From Short-PeriodPkp(Bc)VersusPkp(Df)Waveforms. Geophysical Journal International, 1993, 114, 1-11.	1.0	104
203	Global mapping of upper mantle reflectors from long-period SS precursors. Geophysical Journal International, 1993, 115, 878-904.	1.0	170
204	Imaging Earth's upper mantle. Eos, 1993, 74, 602.	0.1	1
205	Global mapping of topography on the 660-km discontinuity. Nature, 1992, 355, 791-796.	13.7	258
206	A mantle thermometer. Nature, 1992, 356, 662-663.	13.7	0
207	Initial shear wave particle motions and stress constraints at the Anza Seismic Network. Geophysical Journal International, 1992, 108, 740-748.	1.0	47
208	<i>PKP(BC)</i> versus <i>PKP(DF)</i> differential travel times and aspherical structure in the Earth's inner core. Journal of Geophysical Research, 1991, 96, 2233-2247.	3.3	85
209	Reply [to "Comment on â€~Quantitative measurements of shear wave polarizations at the Anza Seismic Network, southern California: Implications for shear wave splitting and earthquake prediction' by Richard C. Aster, Peter M. Shearer, and Jon Bergerâ€J. Journal of Geophysical Research, 1991, 96, 6415-6419.	3.3	25
210	Imaging global body wave phases by stacking longâ€period seismograms. Journal of Geophysical Research, 1991, 96, 20353-20364.	3.3	87
211	Constraints on upper mantle discontinuities from observations of longâ€period reflected and converted phases. Journal of Geophysical Research, 1991, 96, 18147-18182.	3.3	299
212	High-frequency borehole seismograms recorded in the San Jcinto Fault zone, Southern California Part 2. Attenuation and site effects. Bulletin of the Seismological Society of America, 1991, 81, 1081-1100.	1.1	74
213	High-frequency borehole seismograms recorded in the San Jacinto Fault zone, Southern California. Part 1. Polarizations. Bulletin of the Seismological Society of America, 1991, 81, 1057-1080.	1.1	34
214	The density and shear velocity contrast at the inner core boundary. Geophysical Journal International, 1990, 102, 491-498.	1.0	107
215	Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity. Nature, 1990, 344, 121-126.	13.7	233
216	Quantitative measurements of shear wave polarizations at the Anza Seismic Network, southern California: Implications for shear wave splitting and earthquake prediction. Journal of Geophysical Research, 1990, 95, 12449-12473.	3.3	147

#	Article	IF	CITATIONS
217	Summary of seismological constraints on the structure of the Earth's core. Journal of Geophysical Research, 1990, 95, 21691-21695.	3.3	94
218	Water in the lower continental crust: modelling magnetotelluric and seismic reflection results. Geophysical Journal International, 1989, 98, 343-365.	1.0	318
219	Ray tracing in azimuthally anisotropic media-I. Results for models of aligned cracks in the upper crust. Geophysical Journal International, 1989, 96, 51-64.	1.0	48
220	Ray tracing in azimuthally anisotropic media-II. Quasi-shear wave coupling. Geophysical Journal International, 1989, 96, 65-83.	1.0	60
221	Cracked media, Poisson's ratio and the structure of the upper oceanic crust. Geophysical Journal International, 1988, 92, 357-362.	1.0	75
222	Ray tracing in anisotropic media with a linear gradient. Geophysical Journal International, 1988, 94, 575-580.	1.0	51
223	Axi-symmetric Earth models and inner-core anisotropy. Nature, 1988, 333, 228-232.	13.7	90
224	The fossil roots of continents. Nature, 1988, 335, 11-12.	13.7	4
225	Synthetic seismogram modeling of shearâ€wave splitting in VSP data from the Geysers, California. Geophysical Research Letters, 1988, 15, 1085-1088.	1.5	7
226	Slow waves in young basalts. Nature, 1987, 330, 312-313.	13.7	1
227	Compressional and shear wave anisotropy in the oceanic lithosphere - the Ngendei seismic refraction experiment. Geophysical Journal International, 1986, 87, 967-1003.	1.0	140
228	Anisotropy in the oceanic lithosphere theory and observations from the Ngendei seismic refraction experiment in the south-west Pacific. Geophysical Journal International, 1985, 80, 493-526.	1.0	94