List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3828533/publications.pdf Version: 2024-02-01

DETED FISCHED

#	Article	IF	CITATIONS
1	Drop formation in a co-flowing ambient fluid. Chemical Engineering Science, 2004, 59, 3045-3058.	3.8	442
2	The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. Reports on Progress in Physics, 2013, 76, 046601.	20.1	295
3	Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Review of Scientific Instruments, 2003, 74, 4916-4924.	1.3	240
4	Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. ACS Nano, 2018, 12, 3385-3396.	14.6	210
5	Rheology of food materials. Current Opinion in Colloid and Interface Science, 2011, 16, 36-40.	7.4	176
6	Nonlinear rheology of complex fluid–fluid interfaces. Current Opinion in Colloid and Interface Science, 2014, 19, 520-529.	7.4	141
7	Emulsion drops in external flow fields — The role of liquid interfaces. Current Opinion in Colloid and Interface Science, 2007, 12, 196-205.	7.4	128
8	Mechanical properties of protein adsorption layers at the air/water and oil/water interface: A comparison in light of the thermodynamical stability of proteins. Advances in Colloid and Interface Science, 2014, 206, 195-206.	14.7	123
9	Rheological Master Curves of Viscoelastic Surfactant Solutions by Varying the Solvent Viscosity and Temperature. Langmuir, 1997, 13, 7012-7020.	3.5	118
10	Emulsion processing—from single-drop deformation to design of complex processes and products. Chemical Engineering Science, 2005, 60, 2101-2113.	3.8	118
11	Interfacial Rheology of Surface-Active Biopolymers: <i>Acacia senegal</i> Gum versus Hydrophobically Modifed Starch. Biomacromolecules, 2007, 8, 3458-3466.	5.4	106
12	Shear-banding structure orientated in the vorticity direction observed for equimolar micellar solution. Rheologica Acta, 2002, 41, 35-44.	2.4	100
13	Shear and dilatational linear and nonlinear subphase controlled interfacial rheology of β-lactoglobulin fibrils and their derivatives. Journal of Rheology, 2013, 57, 1003-1022.	2.6	100
14	The effects of intermolecular interactions on the physical properties of organogels in edible oils. Journal of Colloid and Interface Science, 2016, 483, 154-164.	9.4	96
15	Time-periodic flow induced structures and instabilities in a viscoelastic surfactant solution. Journal of Non-Newtonian Fluid Mechanics, 1998, 75, 193-208.	2.4	92
16	Broad Bandwidth Optical and Mechanical Rheometry of Wormlike Micelle Solutions. Physical Review Letters, 2007, 99, 068302.	7.8	92
17	Simultaneous Control of pH and Ionic Strength during Interfacial Rheology of β-Lactoglobulin Fibrils Adsorbed at Liquid/Liquid Interfaces. Langmuir, 2012, 28, 12536-12543.	3.5	86
18	In-Situ Quantification of the Interfacial Rheological Response of Bacterial Biofilms to Environmental Stimuli. PLoS ONE, 2013, 8, e78524.	2.5	76

#	Article	IF	CITATIONS
19	Non-linear flow properties of viscoelastic surfactant solutions. Rheologica Acta, 1997, 36, 13-27.	2.4	71
20	Protein adsorption and interfacial rheology interfering in dilatational experiment. European Physical Journal: Special Topics, 2013, 222, 47-60.	2.6	71
21	Time dependent flow in equimolar micellar solutions: transient behaviour of the shear stress and first normal stress difference in shear induced structures coupled with flow instabilities. Rheologica Acta, 2000, 39, 234-240.	2.4	70
22	Adsorption of proteins to fluid interfaces: Role of the hydrophobic subphase. Journal of Colloid and Interface Science, 2021, 584, 411-417.	9.4	70
23	Effect of Oil Hydrophobicity on the Adsorption and Rheology of β-Lactoglobulin at Oil–Water Interfaces. Langmuir, 2018, 34, 4929-4936.	3.5	69
24	Sorbitan Tristearate Layers at the Air/Water Interface Studied by Shear and Dilatational Interfacial Rheology. Langmuir, 2005, 21, 10555-10563.	3.5	68
25	Ion-Induced Hydrogel Formation and Nematic Ordering of Nanocrystalline Cellulose Suspensions. Biomacromolecules, 2017, 18, 4060-4066.	5.4	68
26	Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants. Chemical Engineering Science, 2007, 62, 3242-3258.	3.8	66
27	Rheological approaches to food systems. Comptes Rendus Physique, 2009, 10, 740-750.	0.9	65
28	Effect of acidic, basic and fluoride-catalyzed sol-gel transitions on the preparation of sub-nanostructured silica. Microporous Materials, 1995, 5, 77-90.	1.6	64
29	Rheological Behavior of Fine and Large Particle Suspensions. Journal of Hydraulic Engineering, 2003, 129, 796-803.	1.5	64
30	Tailoring Emulsions for Controlled Lipid Release: Establishing in vitro–in Vivo Correlation for Digestion of Lipids. ACS Applied Materials & Interfaces, 2018, 10, 17571-17581.	8.0	64
31	Injectable Biocompatible Hydrogels from Cellulose Nanocrystals for Locally Targeted Sustained Drug Release. ACS Applied Materials & Interfaces, 2019, 11, 38578-38585.	8.0	62
32	Studying bacterial hydrophobicity and biofilm formation at liquid–liquid interfaces through interfacial rheology and pendant drop tensiometry. Colloids and Surfaces B: Biointerfaces, 2014, 117, 174-184.	5.0	61
33	Bridging the Gap between the Nanostructural Organization and Macroscopic Interfacial Rheology of Amyloid Fibrils at Liquid Interfaces. Langmuir, 2014, 30, 10090-10097.	3.5	61
34	Emulsion Drops with Complex Interfaces: Globular Versus Flexible Proteins. Macromolecular Materials and Engineering, 2011, 296, 249-262.	3.6	59
35	Rheology of concentrated suspensions containing mixtures of spheres and fibres. Rheologica Acta, 2005, 44, 502-512.	2.4	58
36	Stress Driven Shear Bands and the Effect of Confinement on Their StructuresA Rheological, Flow Visualization, and Rheo-SALS Study. Langmuir, 2005, 21, 9051-9057.	3.5	58

#	Article	IF	CITATIONS
37	Adsorption and Interfacial Layer Structure of Unmodified Nanocrystalline Cellulose at Air/Water Interfaces. Langmuir, 2018, 34, 15195-15202.	3.5	56
38	Deformation of single emulsion drops covered with a viscoelastic adsorbed protein layer in simple shear flow. Applied Physics Letters, 2005, 87, 244104.	3.3	55
39	Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends in Food Science and Technology, 2021, 108, 326-342.	15.1	55
40	Extensional Properties of Hydroxypropyl Ether Guar Gum Solutions. Biomacromolecules, 2008, 9, 2989-2996.	5.4	54
41	Single bubble deformation and breakup in simple shear flow. Experiments in Fluids, 2008, 45, 917-926.	2.4	51
42	Tailored Interfacial Rheology for Gastric Stable Adsorption Layers. Biomacromolecules, 2014, 15, 3139-3145.	5.4	51
43	Rheological properties and microstructure of soy-whey protein. Food Hydrocolloids, 2018, 82, 434-441.	10.7	51
44	3D bacterial cellulose biofilms formed by foam templating. Npj Biofilms and Microbiomes, 2018, 4, 21.	6.4	51
45	Adsorption of charged anisotropic nanoparticles at oil–water interfaces. Nanoscale Advances, 2019, 1, 4308-4312.	4.6	50
46	Adsorption and interfacial structure of nanocelluloses at fluid interfaces. Advances in Colloid and Interface Science, 2020, 276, 102089.	14.7	48
47	Effect of Arthrospira platensis microalgae protein purification on emulsification mechanism and efficiency. Journal of Colloid and Interface Science, 2021, 584, 344-353.	9.4	47
48	Ion-Induced Formation of Nanocrystalline Cellulose Colloidal Glasses Containing Nematic Domains. Langmuir, 2019, 35, 4117-4124.	3.5	46
49	Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods. PLoS ONE, 2015, 10, e0136437.	2.5	45
50	Rheometry for large-particulated fluids: analysis of the ball measuring system and comparison to debris flow rheometry. Rheologica Acta, 2009, 48, 715-733.	2.4	44
51	Quantification of Spontaneous W/O Emulsification and its Impact on the Swelling Kinetics of Multiple W/O/W Emulsions. Langmuir, 2016, 32, 5787-5795.	3.5	44
52	Nonlinear shear and dilatational rheology of viscoelastic interfacial layers of cellulose nanocrystals. Physics of Fluids, 2018, 30, .	4.0	43
53	A numerical procedure for calculating droplet deformation in dispersing flows and experimental verification. Chemical Engineering Science, 2003, 58, 2351-2363.	3.8	42
54	Scanning-SAXS of microfluidic flows: nanostructural mapping of soft matter. Lab on A Chip, 2016, 16, 4028-4035.	6.0	42

#	Article	IF	CITATIONS
55	Chia seed mucilage – a vegan thickener: isolation, tailoring viscoelasticity and rehydration. Food and Function, 2019, 10, 4854-4860.	4.6	42
56	Globular protein assembly and network formation at fluid interfaces: effect of oil. Soft Matter, 2021, 17, 1692-1700.	2.7	42
57	Interfacial rheology of soy proteins – High methoxyl pectin films. Food Hydrocolloids, 2009, 23, 2125-2131.	10.7	41
58	Continuous flow structuring of anisotropic biopolymer particles. Advances in Colloid and Interface Science, 2009, 150, 16-26.	14.7	41
59	Chemical and physical properties of alginate-like exopolymers of aerobic granules and flocs produced from different wastewaters. Bioresource Technology, 2020, 312, 123632.	9.6	41
60	Investigation of equilibrium solubility of a carob galactomannan. Food Hydrocolloids, 2007, 21, 683-692.	10.7	39
61	Characterization of galactomannans isolated from legume endosperms of Caesalpinioideae and Faboideae subfamilies by multidetection aqueous SEC. Carbohydrate Polymers, 2010, 79, 70-84.	10.2	36
62	Viscoelasticity Enhancement of Surfactant Solutions Depends on Molecular Conformation: Influence of Surfactant Headgroup Structure and Its Counterion. Langmuir, 2016, 32, 4239-4250.	3.5	36
63	Partial aqueous solubility of low-galactose-content galactomannans—What is the quantitative basis?. Current Opinion in Colloid and Interface Science, 2006, 11, 184-190.	7.4	35
64	Rheological characteristics of debris-flow material in South-Gargano watersheds. Natural Hazards, 2010, 54, 209-223.	3.4	35
65	Surfactant Adsorption to Different Fluid Interfaces. Langmuir, 2021, 37, 6722-6727.	3.5	35
66	Alternating Vorticity Bands in a Solution of Wormlike Micelles. Physical Review Letters, 2007, 99, 158302.	7.8	34
67	Microstructure and Stability of a Lamellar Liquid Crystalline and Gel Phase Formed by a Polyglycerol Ester Mixture in Dilute Aqueous Solution. Langmuir, 2007, 23, 12827-12834.	3.5	34
68	Hagfish slime and mucin flow properties and their implications for defense. Scientific Reports, 2016, 6, 30371.	3.3	34
69	Blocking Gastric Lipase Adsorption and Displacement Processes with Viscoelastic Biopolymer Adsorption Layers. Biomacromolecules, 2016, 17, 3328-3337.	5.4	34
70	Microfluidic Technique for the Simultaneous Quantification of Emulsion Instabilities and Lipid Digestion Kinetics. Analytical Chemistry, 2017, 89, 9116-9123.	6.5	34
71	Liquid Jet Stability in a Laminar Flow Field. Chemical Engineering and Technology, 2002, 25, 499-506.	1.5	33
72	Stratification in the physical structure and cohesion of membrane biofilms — Implications for hydraulic resistance. Journal of Membrane Science, 2018, 564, 897-904.	8.2	33

#	Article	IF	CITATIONS
73	Three-Dimensional Modeling of Mechanical Forces in the Extracellular Matrix during Epithelial Lumen Formation. Biophysical Journal, 2006, 90, 4380-4391.	0.5	32
74	Transient measurement and structure analysis of protein–polysaccharide multilayers at fluid interfaces. Soft Matter, 2019, 15, 6362-6368.	2.7	32
75	Adsorption kinetics and foaming properties of soluble microalgae fractions at the air/water interface. Food Hydrocolloids, 2019, 97, 105182.	10.7	32
76	Replicating the <i>Cynandra opis</i> Butterfly's Structural Color for Bioinspired Bigrating Color Filters. Advanced Materials, 2022, 34, e2109161.	21.0	30
77	Foams Stabilized by Multilamellar Polyglycerol Ester Self-Assemblies. Langmuir, 2013, 29, 38-49.	3.5	29
78	Ionic micelles and aromatic additives: a closer look at the molecular packing parameter. Physical Chemistry Chemical Physics, 2017, 19, 21869-21877.	2.8	29
79	Targeted Inhibition of Enzymatic Browning in Wheat Pastry Dough. Journal of Agricultural and Food Chemistry, 2018, 66, 12353-12360.	5.2	28
80	Shear relaxation in the nonlinear-viscoelastic regime of a Giesekus fluid. Journal of Non-Newtonian Fluid Mechanics, 1999, 88, 133-148.	2.4	27
81	Linear Flow Properties of Dimer Acid Betaine Solutions with and without Changed Ionic Strength. Journal of Physical Chemistry B, 2002, 106, 11041-11046.	2.6	27
82	Characterization of galactomannans derived from legume endosperms of genus Sesbania (Faboideae). Carbohydrate Polymers, 2011, 84, 550-559.	10.2	27
83	Decoupling of Mass Transport Mechanisms in the Stagewise Swelling of Multiple Emulsions. Langmuir, 2015, 31, 5265-5273.	3.5	27
84	Micellar solutions in contraction slit-flow: Alignment mapped by SANS. Journal of Non-Newtonian Fluid Mechanics, 2015, 215, 8-18.	2.4	27
85	Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose. Langmuir, 2016, 32, 1396-1404.	3.5	27
86	Cohesiveness and flowability of particulated solid and semi-solid food systems. Food and Function, 2017, 8, 3647-3653.	4.6	27
87	Crystallization-Induced Network Formation of Tri- and Monopalmitin at the Middle-Chain Triglyceride Oil/Air Interface. Langmuir, 2020, 36, 7566-7572.	3.5	27
88	Novel Type of Bicellar Disks from a Mixture of DMPC and DMPE-DTPA with Complexed Lanthanides. Langmuir, 2010, 26, 5382-5387.	3.5	26
89	Determination of the interfacial tension of low density difference liquid–liquid systems containing surfactants by droplet deformation methods. Chemical Engineering Science, 2006, 61, 1386-1394.	3.8	25
90	Rheology of interfacial protein-polysaccharide composites. European Physical Journal: Special Topics, 2013, 222, 73-81.	2.6	25

#	Article	IF	CITATIONS
91	Designing Cellulose Nanofibrils for Stabilization of Fluid Interfaces. Biomacromolecules, 2019, 20, 4574-4580.	5.4	25
92	Interfacial Rheology of Charged Anisotropic Cellulose Nanocrystals at the Air–Water Interface. Langmuir, 2019, 35, 7937-7943.	3.5	25
93	Flow processing and gel formation—a promising combination for the design of the shape of gelatin drops. Food Hydrocolloids, 2002, 16, 633-643.	10.7	24
94	Ultrasound velocimetry in a shear-thickening wormlike micellar solution: Evidence for the coexistence of radial and vorticity shear bands. European Physical Journal E, 2008, 26, 3-12.	1.6	24
95	Stabilization mechanism of double emulsions made by microfluidics. Soft Matter, 2012, 8, 11471.	2.7	24
96	Bulk and interfacial rheology of emulsions stabilized with clay particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 316-326.	4.7	24
97	Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomaterialia, 2021, 130, 32-53.	8.3	24
98	Complex Interfaces and their Role in Proteinâ€6tabilized Soft Materials. ChemPhysChem, 2008, 9, 1833-1837.	2.1	23
99	Interfacial localization of nanoclay particles in oil-in-water emulsions and its reflection in in interfacial moduli. Rheologica Acta, 2013, 52, 327-335.	2.4	23
100	Rigid, Fibrillar Quaternary Structures Induced by Divalent Ions in a Carboxylated Linear Polysaccharide. ACS Macro Letters, 2020, 9, 115-121.	4.8	23
101	Drop deformation dynamics and gel kinetics in a co-flowing water-in-oil system. Journal of Colloid and Interface Science, 2005, 286, 378-386.	9.4	22
102	Modifying the Contact Angle of Anisotropic Cellulose Nanocrystals: Effect on Interfacial Rheology and Structure. Langmuir, 2018, 34, 10932-10942.	3.5	22
103	Influence of the interfacial tension on the microstructural and mechanical properties of microgels at fluid interfaces. Journal of Colloid and Interface Science, 2022, 608, 2584-2592.	9.4	22
104	Cholesterol Increases the Magnetic Aligning of Bicellar Disks from an Aqueous Mixture of DMPC and DMPE–DTPA with Complexed Thulium Ions. Langmuir, 2012, 28, 10905-10915.	3.5	21
105	Fiber-Enforced Hydrogels: Hagfish Slime Stabilized with Biopolymers including κ-Carrageenan. ACS Biomaterials Science and Engineering, 2016, 2, 90-95.	5.2	21
106	Intermicellar Interactions and the Viscoelasticity of Surfactant Solutions: Complementary Use of SANS and SAXS. Langmuir, 2017, 33, 2617-2627.	3.5	21
107	Acute effects of combined exercise and oscillatory positive expiratory pressure therapy on sputum properties and lung diffusing capacity in cystic fibrosis: a randomized, controlled, crossover trial. BMC Pulmonary Medicine, 2018, 18, 99.	2.0	21
108	Branched viscoelastic surfactant solutions and their response to elongational flow. Rheologica Acta, 1997, 36, 632-638.	2.4	20

#	Article	IF	CITATIONS
109	Microfluidic production of monodisperse biopolymer particles with reproducible morphology by kinetic control. Food Hydrocolloids, 2012, 28, 20-27.	10.7	20
110	Effective viscosity measurement of interfacial bubble and particle layers at high volume fraction. Flow Measurement and Instrumentation, 2015, 41, 121-128.	2.0	20
111	Shear rheological properties of acid hydrolyzed insoluble proteins from Chlorella protothecoides at the oil-water interface. Journal of Colloid and Interface Science, 2019, 551, 297-304.	9.4	20
112	Effect of the hydrophobic phase on interfacial phenomena of surfactants, proteins, and particles at fluid interfaces. Current Opinion in Colloid and Interface Science, 2021, 56, 101509.	7.4	20
113	Alignment of Bicelles Studied with High-Field Magnetic Birefringence and Small-Angle Neutron Scattering Measurements. Langmuir, 2013, 29, 3467-3473.	3.5	19
114	Magnetically Enhanced Bicelles Delivering Switchable Anisotropy in Optical Gels. ACS Applied Materials & Interfaces, 2014, 6, 1100-1105.	8.0	19
115	Investigation of changes in chemical composition and rheological properties of Kyrgyz rice cultivars (Ozgon rice) depending on long-termÂstack-storage after harvesting. LWT - Food Science and Technology, 2015, 63, 626-632.	5.2	19
116	Effect of ionic strength and seawater cations on hagfish slime formation. Scientific Reports, 2018, 8, 9867.	3.3	19
117	Phase Behavior and Flow Properties of "Hairy-Rod―Monolayers. Langmuir, 2000, 16, 726-734.	3.5	18
118	Droplet deformation under simple shear investigated by experiment, numerical simulation and modeling. Journal of Non-Newtonian Fluid Mechanics, 2005, 126, 153-161.	2.4	18
119	Ultrasonic spinning rheometry test on the rheology of gelled food for making better tasting desserts. Physics of Fluids, 2019, 31, .	4.0	17
120	Self-Assembly Pathways and Antimicrobial Properties of Lysozyme in Different Aggregation States. Biomacromolecules, 2021, 22, 4327-4336.	5.4	17
121	The many ways sputum flows – Dealing with high within-subject variability in cystic fibrosis sputum rheology. Respiratory Physiology and Neurobiology, 2018, 254, 36-39.	1.6	16
122	Viscoelastic characterization of the crosslinking of β-lactoglobulin on emulsion drops via microcapsule compression and interfacial dilational and shear rheology. Journal of Colloid and Interface Science, 2021, 583, 404-413.	9.4	16
123	Experimental determination of interfacial tension by different dynamical methods under simple shear flow conditions with a novel computer-controlled parallel band apparatus. Journal of Colloid and Interface Science, 2004, 274, 631-636.	9.4	15
124	Computer-Controlled Flow Cell for the Study of Particle and Drop Dynamics in Shear Flow Fields. Industrial & Engineering Chemistry Research, 2005, 44, 6999-7009.	3.7	15
125	Gelation of Soy Milk with Hagfish Exudate Creates a Flocculated and Fibrous Emulsion- and Particle Gel. PLoS ONE, 2016, 11, e0147022.	2.5	15
126	Complex fluids in animal survival strategies. Soft Matter, 2021, 17, 3022-3036.	2.7	15

#	Article	IF	CITATIONS
127	Transient <i>in situ</i> measurement of kombucha biofilm growth and mechanical properties. Food and Function, 2021, 12, 4015-4020.	4.6	15
128	Periodic dripping dynamics in a co-flowing liquid-liquid system. Physics of Fluids, 2012, 24, .	4.0	14
129	Shear thickening, temporal shear oscillations, and degradation of dilute equimolar CTAB/NaSal wormlike solutions. Rheologica Acta, 2013, 52, 297-312.	2.4	14
130	Limiting coalescence by interfacial rheology: over-compressed polyglycerol ester layers. Rheologica Acta, 2016, 55, 537-546.	2.4	14
131	Synergistic effect of glycyrrhizic acid and cellulose nanocrystals for oil-water interfacial stabilization. Food Hydrocolloids, 2021, 120, 106888.	10.7	14
132	Development of Smart Optical Gels with Highly Magnetically Responsive Bicelles. ACS Applied Materials & Interfaces, 2018, 10, 8926-8936.	8.0	13
133	A Counter Propagating Lensâ€Mirror System for Ultrahigh Throughput Single Droplet Detection. Small, 2020, 16, e1907534.	10.0	13
134	Continuous Paranematic Ordering of Rigid and Semiflexible Amyloid-Fe ₃ O ₄ Hybrid Fibrils in an External Magnetic Field. Biomacromolecules, 2016, 17, 2555-2561.	5.4	12
135	Complex emulsion stabilization behavior of clay particles and surfactants based on an interfacial rheological study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125121.	4.7	12
136	Influence of Amylase Addition on Bread Quality and Bread Staling. ACS Food Science & Technology, 2021, 1, 1143-1150.	2.7	12
137	Magnetic Field Alignable Domains in Phospholipid Vesicle Membranes Containing Lanthanides. Journal of Physical Chemistry B, 2010, 114, 174-186.	2.6	11
138	Tailoring Bicelle Morphology and Thermal Stability with Lanthanide-Chelating Cholesterol Conjugates. Langmuir, 2016, 32, 9005-9014.	3.5	11
139	Hagfish slime exudate stabilization and its effect on slime formation and functionality. Biology Open, 2017, 6, 1115-1122.	1.2	11
140	Crust treatments to reduce bread staling. Current Research in Food Science, 2021, 4, 182-190.	5.8	11
141	Micro-computed tomography study on bread dehydration and structural changes during ambient storage. Journal of Food Engineering, 2021, 296, 110462.	5.2	11
142	Experimental and numerical analysis of droplet deformation in a complex flow generated by a rotor–stator device. Chemical Engineering Science, 2008, 63, 3526-3536.	3.8	10
143	Cholesterol-Diethylenetriaminepentaacetate Complexed with Thulium Ions Integrated into Bicelles To Increase Their Magnetic Alignability. Journal of Physical Chemistry B, 2013, 117, 14743-14748.	2.6	10
144	Shear localisation in interfacial particle layers and its influence on Lissajous-plots. Rheologica Acta, 2016, 55, 267-278.	2.4	10

#	Article	IF	CITATIONS
145	Rheological analysis of oil–water emulsions stabilized with clay particles by LAOS and interfacial shear moduli measurements. Rheologica Acta, 2019, 58, 453-466.	2.4	10
146	Interfacial Fourier transform shear rheometry of complex fluid interfaces. Rheologica Acta, 2019, 58, 29-45.	2.4	10
147	Self-Grown Bacterial Cellulose Capsules Made through Emulsion Templating. ACS Biomaterials Science and Engineering, 2021, 7, 3221-3228.	5.2	10
148	Entrance flow of unfoamed and foamed Herschel–Bulkley fluids. Journal of Rheology, 2021, 65, 1155-1168.	2.6	10
149	Localization of clay particles at the oil–water interface in the presence of surfactants. Rheologica Acta, 2015, 54, 725-734.	2.4	9
150	Structure and Nanomechanics of Dry and Hydrated Intermediate Filament Films and Fibers Produced from Hagfish Slime Fibers. ACS Applied Materials & Interfaces, 2018, 10, 40460-40473.	8.0	9
151	Molecular interactions and the viscoelasticity of micellar aggregates. Physics of Fluids, 2019, 31, .	4.0	9
152	Structure and dynamics of hagfish mucin in different saline environments. Soft Matter, 2019, 15, 8627-8637.	2.7	9
153	Rheology of cocoa butter. Journal of Food Engineering, 2021, 305, 110598.	5.2	9
154	Purified exopolysaccharides from Weissella confusa 11GU-1 and Propionibacterium freudenreichii JS15 act synergistically on bread structure to prevent staling. LWT - Food Science and Technology, 2020, 127, 109375.	5.2	9
155	Rheologische Eigenschaften von DimersĤrebetainlĶsungen / Rheological Properties of Dimer Acid Betaine Solutions. Tenside, Surfactants, Detergents, 1994, 31, 99-108.	1.2	9
156	Simultaneous visualization of the flow inside and around droplets generated in microchannels. Microfluidics and Nanofluidics, 2014, 16, 743-755.	2.2	8
157	On the appearance of vorticity and gradient shear bands in wormlike micellar solutions of different CPCI/salt systems. Journal of Rheology, 2014, 58, 1647-1672.	2.6	8
158	Scaffold requirements for periodontal regeneration with enamel matrix derivative proteins. Colloids and Surfaces B: Biointerfaces, 2017, 156, 221-226.	5.0	8
159	Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility. Physical Chemistry Chemical Physics, 2017, 19, 20991-21002.	2.8	8
160	Comparison of rheological and colorimetric measurements to determine $\hat{1}_{\pm}$ -amylase activity for malt used for the beverage Bozo. International Journal of Food Properties, 2017, 20, 2060-2070.	3.0	8
161	Rheology of Swiss Cheese Fondue. ACS Omega, 2019, 4, 1103-1109.	3.5	8
162	Role of viscoelastic interfaces in emulsion rheology and drop deformation. Central South University, 2007, 14, 246-249.	0.5	7

#	Article	IF	CITATIONS
163	A Rat Model of Human Lipid Emulsion Digestion. Frontiers in Nutrition, 2019, 6, 170.	3.7	7
164	Amyloid hybrid membranes for bacterial & genetic material removal from water and their anti-biofouling properties. Nanoscale Advances, 2020, 2, 4665-4670.	4.6	7
165	Higher Salt Hydrophobicity Lengthens Ionic Wormlike Micelles and Stabilizes Them upon Heating. Langmuir, 2021, 37, 132-138.	3.5	7
166	Quantitative description of the non-linear flow properties of viscoelastic surfactant solutions. , 1995, , 94-98.		6
167	The Influence of the External Imprinted Flow Field on Capillary Instability Driven Jet Breakup. Chemical Engineering and Technology, 2004, 27, 1161-1171.	1.5	6
168	Predictive stress tests to study the influence of processing procedures on long term stability of supersaturated pharmaceutical o/w creams. International Journal of Pharmaceutics, 2007, 339, 189-196.	5.2	6
169	The interfacial behavior of designed ankyrin repeat proteins. Soft Matter, 2011, 7, 7612.	2.7	6
170	Mastering the magnetic susceptibility of magnetically responsive bicelles with 3β-amino-5-cholestene and complexed lanthanide ions. Physical Chemistry Chemical Physics, 2017, 19, 10820-10824.	2.8	6
171	In-situ shear-banding quantification of surfactant solutions in straight microfluidic channels. Journal of Rheology, 2017, 61, 769-783.	2.6	6
172	Relaxation Behavior and Nonlinear Surface Rheology of PEO–PPO–PEO Triblock Copolymers at the Air–Water Interface. Langmuir, 2019, 35, 14388-14396.	3.5	6
173	Laminar Flow-Based Fiber Fabrication and Encoding via Two-Photon Lithography. ACS Applied Materials & Interfaces, 2020, 12, 54068-54074.	8.0	6
174	Interfacial Properties of Chitosan in Interfacial Shear and Capsule Compression. ACS Applied Materials & Interfaces, 2020, 12, 48084-48092.	8.0	6
175	Extensional Flow in Two-Dimensional Amphiphilic Networks. Langmuir, 1996, 12, 6315-6319.	3.5	5
176	Dynamics of complex fluid-fluid interfaces. European Physical Journal: Special Topics, 2013, 222, 1-5.	2.6	5
177	Investigation of the prebiotic potential of rice varieties for Lactobacillus acidophilus bacteria. European Food Research and Technology, 2021, 247, 1815-1824.	3.3	5
178	Time-dependent viscoelastic characteristics of montmorillonite dispersion examined by ultrasonic spinning rheometry. Applied Clay Science, 2022, 217, 106395.	5.2	5
179	Microgels as globular protein model systems. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112595.	5.0	5
180	Macroscopic Pipe Flow of Micellar Solutions Investigated by Ultrasound Doppler Velocimetry. Tenside, Surfactants, Detergents, 2009, 46, 140-144.	1.2	4

#	Article	IF	CITATIONS
181	Methods for Generating Highly Magnetically Responsive Lanthanide-Chelating Phospholipid Polymolecular Assemblies. Langmuir, 2017, 33, 6363-6371.	3.5	4
182	Understanding the Enhanced Magnetic Response of Aminocholesterol Doped Lanthanide-Ion-Chelating Phospholipid Bicelles. Langmuir, 2017, 33, 8533-8544.	3.5	4
183	Effect of foaming on mechanical properties of microfibrillated cellulose-based porous solids. Cellulose, 2019, 26, 2487-2497.	4.9	4
184	Black tea interfacial rheology and calcium carbonate. Physics of Fluids, 2021, 33, 092105.	4.0	4
185	Structure Engineering of Multiphase Food Systems by Flow Processing. Chemie-Ingenieur-Technik, 2001, 73, 695-695.	0.8	3
186	Shear thickening and shear induced band formations in solutions of wormlike micelles. Central South University, 2007, 14, 213-217.	0.5	3
187	Rheological properties and debris-flow modeling in a southern Italy watershed. , 2010, , .		3
188	Semi-dilute galactomannan solutions: observations on viscosity scaling behavior of guar gum. Journal of Physics Condensed Matter, 2014, 26, 464107.	1.8	2
189	The Influence of Arginine on the Response of Enamel Matrix Derivative (EMD) Proteins to Thermal Stress: Towards Improving the Stability of EMD-Based Products. PLoS ONE, 2015, 10, e0144641.	2.5	2
190	Investigation on the Drop Break-up under Controlled Mixed Shear and Elongational Flow Conditions in Combination with the Morphology and Rheology of Emulsifiers at the Drop's Interface. Chemie-Ingenieur-Technik, 2001, 73, 740-741.	0.8	1
191	Morphological transitions in dilute solutions of sugar-based zwitterionic dimer betaine surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 326, 103-108.	4.7	1
192	Fabrication Procedures and Birefringence Measurements for Designing Magnetically Responsive Lanthanide Ion Chelating Phospholipid Assemblies. Journal of Visualized Experiments, 2018, , .	0.3	1
193	Coupling of long-wavelength density fluctuations to orientations in cellulose nanocrystal suspensions under external fields. Physical Review E, 2019, 100, 052606.	2.1	1
194	Potential Factors for Poor Reproducibility of In Vitro Hemolysis Testing. ASAIO Journal, 2021, Publish Ahead of Print, .	1.6	1
195	The rheology and foamability of crystal-melt suspensions composed of triacylglycerols. Soft Matter, 2022, , .	2.7	1
196	Controlled structuring of dispersed multiphase food systems. Central South University, 2007, 14, 505-509.	0.5	0
197	Interfacial Rheology of Bacterial Biofilms at Air/Water and Oil/Water Interfaces. Chimia, 2014, 68, 273-273.	0.6	0
198	Stabilizing emulsions with microalgae proteins – Changes in mechanism and efficiency along purification. Chemie-Ingenieur-Technik, 2020, 92, 1238-1238.	0.8	0

#	Article	IF	CITATIONS
199	Single Droplet Detection: A Counter Propagating Lensâ€Mirror System for Ultrahigh Throughput Single Droplet Detection (Small 20/2020). Small, 2020, 16, 2070112.	10.0	0

A New Class of Shear Induced Structure in Viscoelastic Micellar Solutions. , 1998, , 525-526.

0