Qizhen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3828469/publications.pdf

Version: 2024-02-01

		361296	501076
50	894	20	28
papers	citations	h-index	g-index
51	51	51	663
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of strain amplitude on tension–compression fatigue behavior of extruded Mg6Al1ZnA magnesium alloy. Scripta Materialia, 2010, 62, 778-781.	2.6	77
2	Mechanical properties and microscopic deformation mechanism of polycrystalline magnesium under high-strain-rate compressive loadings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 540, 130-134.	2.6	63
3	Dislocation Mechanics of High-Rate Deformations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4438-4453.	1.1	45
4	Tensile mechanical properties and fracture behaviors of nickel-based superalloy 718 in the presence of hydrogen. International Journal of Hydrogen Energy, 2018, 43, 20118-20132.	3.8	42
5	Mechanical Properties of Cast Ti-6Al-4V Lattice Block Structures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 441-449.	1.1	41
6	Mechanical behavior of porous magnesium/alumina composites with high strength and low density. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 574, 137-142.	2.6	39
7	Dynamic mechanical response of magnesium single crystal under compression loading: Experiments, model, and simulations. Journal of Applied Physics, 2011, 109, .	1.1	33
8	Quasi in-situ EBSD analysis of twinning-detwinning and slip behaviors in textured AZ31 magnesium alloy subjected to compressive-tensile loading. Journal of Magnesium and Alloys, 2022, 10, 956-964.	5 . 5	33
9	Microstructure and deformation mechanism of 0001 magnesium single crystal subjected to quasistatic and high-strain-rate compressiveloadings. Materials Science & Depineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 568, 96-101.	2.6	30
10	Effect of heat treatment on hydrogen-assisted fracture behavior of PH13-8Mo steel. Corrosion Science, 2017, 128, 198-212.	3.0	30
11	Microstructure and deformation mechanism of Mg6Al1ZnA alloy experienced tension–compression cyclic loading. Scripta Materialia, 2011, 64, 233-236.	2.6	27
12	Compression behavior of magnesium/carbon nanotube composites. Journal of Materials Research, 2013, 28, 1877-1884.	1.2	27
13	Effect of carbon nanofiber concentration on mechanical properties of porous magnesium composites: Experimental and theoretical analysis. Materials Science & Dineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 706, 249-255.	2.6	27
14	Enhancing degradation and corrosion resistance of AZ31 magnesium alloy through hydrophobic coating. Materials Chemistry and Physics, 2019, 225, 426-432.	2.0	27
15	Mechanical properties and microstructure of pure polycrystalline magnesium rolled by different routes. Materials Letters, 2012, 67, 81-83.	1.3	25
16	Hydrogen embrittlement behavior of Inconel 718 alloy at room temperature. Journal of Materials Science and Technology, 2019, 35, 499-502.	5 . 6	24
17	Compressive mechanical property of porous magnesium composites reinforced by carbon nanotubes. Journal of Materials Science, 2016, 51, 5232-5239.	1.7	23
18	Effect of porosity and carbon composition on pore microstructure of magnesium/carbon nanotube composite foams. Materials and Design, 2016, 89, 978-987.	3.3	22

#	Article	IF	Citations
19	Carbon nanotube reinforced porous magnesium composite: 3D nondestructive microstructure characterization using x-ray micro-computed tomography. Materials Letters, 2014, 133, 83-86.	1.3	21
20	A comparative study of hydrogen embrittlement of 20SiMn2CrNiMo, PSB1080 and PH13-8Mo high strength steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 518-528.	2.6	20
21	Effect of {10â°'12} twinning on the deformation behavior of AZ31 magnesium alloy. Materials Science & Scie	2.6	19
22	Mechanical Properties of Lightweight Porous Magnesium Processed Through Powder Metallurgy. Jom, 2018, 70, 650-655.	0.9	17
23	Exploration of equal channel angular pressing routes for efficiently achieving ultrafine microstructure in magnesium. Materials Science & Droperties, Microstructure and Processing, 2018, 733, 179-189.	2.6	16
24	Hydrogen-assisted failure of laser melting additive manufactured IN718 superalloy. Corrosion Science, 2019, 160, 108171.	3.0	16
25	Effect of pre-compression on microstructural evolution, mechanical property and strengthening mechanism of AZ31 alloy. Journal of Materials Science, 2020, 55, 11637-11649.	1.7	15
26	Compressive deformation and fracture behaviors of AZ31 magnesium alloys with equiaxed grains or bimodal grains. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 466-476.	2.6	14
27	Study of reversible motion of <mml:math altimg="si2.gif" overflow="scroll" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mfenced close="}" open="{"><mml:mrow><mml:mrow><mml:mn>10</mml:mn><mml:mover><mml:mn>1</mml:mn> Âtensile twin boundaries in a magnesium alloy during strain path changes. Materials Letters, 2018, 231,</mml:mover></mml:mrow></mml:mrow></mml:mfenced></mml:math>	T <b Insnl:mo	o> 1 }mml:mo
28	Transformation Superplasticity of Cast Titanium and Ti-6Al-4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 44-53.	1.1	12
29	Effect of Ball Milling Time on Microstructure and Hardness of Porous Magnesium/Carbon Nanofiber Composites. Jom, 2017, 69, 1236-1243.	0.9	12
30	Recrystallization mechanism and activation energies of severely-deformed magnesium during annealing process. Materialia, 2019, 5, 100188.	1.3	10
31	Evaluation of chlorine substituted hydroxyapatite (ClHAP)/polydopamine composite coatings on Ti64. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110799.	2.5	10
32	Fatigue behavior and microstructure of 0001 and 1Ì,,014 magnesium single crystals under compression–compression cyclic loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 301-308.	2.6	9
33	Effect of CrxCy–NiCr coating on the hydrogen embrittlement of 17-4 PH stainless steel using the smooth bar tensile test. Journal of Materials Science, 2019, 54, 7356-7368.	1.7	9
34	An observation about global microstructure of ECAPed magnesium. Emerging Materials Research, 2014, 3, 261-264.	0.4	8
35	Surface modification of Ti64 through hydrothermal treatment in urea solutions. Materials Letters, 2018, 216, 299-302.	1.3	7
36	Deformation mechanisms and mechanical properties of porous magnesium/carbon nanofiber composites with different porosities. Journal of Materials Science, 2018, 53, 14375-14385.	1.7	7

#	Article	IF	CITATIONS
37	Effects of chloride substitution on physical, mechanical, and biological properties of hydroxyapatite. Ceramics International, 2021, 47, 13207-13215.	2.3	6
38	Effect of subfreezing testing temperature on tensile mechanical behavior of fine-grained magnesium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140457.	2.6	4
39	Fatigue behavior of fine-grained magnesium under tension-tension loading at 0°C. International Journal of Fatigue, 2021, 153, 106506.	2.8	4
40	Ambient Compression–Compression Fatigue Behavior of Magnesium Single Crystal. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 41-46.	1.1	3
41	Effect of Compaction Pressure and Magnesium Weight Fraction on Hardness of Recycled-Polystyrene Matrix Composite. Jom, 2018, 70, 1454-1458.	0.9	3
42	Study of growth twins produced through heat treatment of fine-grained magnesium. Materials Science & Science & Properties, Microstructure and Processing, 2022, 841, 143047.	2.6	2
43	Modeling of Transformation Superplastic Forming of Ti Alloys. Journal of Materials Engineering and Performance, 2008, 17, 363-368.	1.2	1
44	Evolution of Heterogeneous Microstructure of Equal-Channel Angular Pressed Magnesium. Minerals, Metals and Materials Series, 2019, , 59-63.	0.3	1
45	Mechanical and Phase Transformation Behavior of Plastically Strained NiTi-based Shape Memory Alloys. Materials Research Society Symposia Proceedings, 2008, 1097, 1.	0.1	O
46	Peak/Plateau Strength in Nanoscale Multilayer Thin Films: Constrained vs Unconstrained Dislocation Nucleation. Materials Research Society Symposia Proceedings, 2009, 1177, 75.	0.1	0
47	Thickness distribution of superplastic formed titanium-based domes. Jom, 2010, 62, 25-27.	0.9	O
48	Grain Size and Mechanical Property of Magnesium Experienced Rolling and Post Heat Treatment. Conference Proceedings of the Society for Experimental Mechanics, 2021, , 13-19.	0.3	0
49	Strength and Energy Absorption Capability of Porous Magnesium Composites Reinforced by Carbon Nanofibers. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 195-200.	0.3	0
50	Microstructure and Hardness of Porous Magnesium Processed by Powder Metallurgy Using Polystyrene as the Space Holder. Minerals, Metals and Materials Series, 2020, , 387-391.	0.3	0