Edward M Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3828384/publications.pdf

Version: 2024-02-01

687363 454955 1,473 33 13 30 citations h-index g-index papers 62 62 62 2133 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Cattle farmer psychosocial profiles and their association with control strategies for bovine viral diarrhea. Journal of Dairy Science, 2022, 105, 3559-3573.	3.4	7
2	Fitting to the UK COVID-19 outbreak, short-term forecasts and estimating the reproductive number. Statistical Methods in Medical Research, 2022, 31, 1716-1737.	1.5	22
3	Quantifying pupil-to-pupil SARS-CoV-2 transmission and the impact of lateral flow testing in English secondary schools. Nature Communications, 2022, 13, 1106.	12.8	24
4	Assessing the impact of lateral flow testing strategies on within-school SARS-CoV-2 transmission and absences: A modelling study. PLoS Computational Biology, 2022, 18, e1010158.	3.2	11
5	The effect of notification window length on the epidemiological impact of COVID-19 contact tracing mobile applications. Communications Medicine, 2022, 2, .	4.2	3
6	Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour. PLoS Computational Biology, 2022, 18, e1010235.	3.2	9
7	Predictions of COVID-19 dynamics in the UK: Short-term forecasting and analysis of potential exit strategies. PLoS Computational Biology, 2021, 17, e1008619.	3.2	87
8	Developing a Framework for Public Involvement in Mathematical and Economic Modelling: Bringing New Dynamism to Vaccination Policy Recommendations. Patient, 2021, 14, 435-445.	2.7	24
9	Modelling optimal vaccination strategy for SARS-CoV-2 in the UK. PLoS Computational Biology, 2021, 17, e1008849.	3.2	142
10	The impact of school reopening on the spread of COVID-19 in England. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200261.	4.0	41
11	A network modelling approach to assess non-pharmaceutical disease controls in a worker population: An application to SARS-CoV-2. PLoS Computational Biology, 2021, 17, e1009058.	3.2	12
12	An analysis of school absences in England during the COVID-19 pandemic. BMC Medicine, 2021, 19, 137.	5 . 5	17
13	Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study. Lancet Infectious Diseases, The, 2021, 21, 793-802.	9.1	453
14	SARS-CoV-2 incidence and vaccine escape. Lancet Infectious Diseases, The, 2021, 21, 913-914.	9.1	51
15	Vaccine escape in a heterogeneous population: insights for SARS-CoV-2 from a simple model. Royal Society Open Science, 2021, 8, 210530.	2.4	33
16	SARS-CoV-2 infection in UK university students: lessons from September–December 2020 and modelling insights for future student return. Royal Society Open Science, 2021, 8, 210310.	2.4	15
17	Modelling SARS-CoV-2 transmission in a UK university setting. Epidemics, 2021, 36, 100476.	3.0	17
18	Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics. Nature Communications, 2021, 12, 5730.	12.8	90

#	Article	IF	CITATIONS
19	Comparison between one and two dose SARS-CoV-2 vaccine prioritization for a fixed number of vaccine doses. Journal of the Royal Society Interface, 2021, 18, 20210214.	3.4	13
20	Precautionary breaks: Planned, limited duration circuit breaks to control the prevalence of SARS-CoV2 and the burden of COVID-19 disease. Epidemics, 2021, 37, 100526.	3.0	8
21	Optimising age coverage of seasonal influenza vaccination in England: A mathematical and health economic evaluation. PLoS Computational Biology, 2020, 16, e1008278.	3.2	7
22	Title is missing!. , 2020, 16, e1008278.		0
23	Title is missing!. , 2020, 16, e1008278.		0
24	Title is missing!. , 2020, 16, e1008278.		0
25	Title is missing!. , 2020, 16, e1008278.		0
26	Seasonal influenza: Modelling approaches to capture immunity propagation. PLoS Computational Biology, 2019, 15, e1007096.	3.2	35
27	Spatio-temporal modelling of Leishmania infantum infection among domestic dogs: a simulation study and sensitivity analysis applied to rural Brazil. Parasites and Vectors, 2019, 12, 215.	2.5	6
28	The impact of surveillance and control on highly pathogenic avian influenza outbreaks in poultry in Dhaka division, Bangladesh. PLoS Computational Biology, 2018, 14, e1006439.	3.2	17
29	Modelling H5N1 in Bangladesh across spatial scales: Model complexity and zoonotic transmission risk. Epidemics, 2017, 20, 37-55.	3.0	19
30	Evidence for history-dependence of influenza pandemic emergence. Scientific Reports, 2017, 7, 43623.	3.3	7
31	Spreading of components of mood in adolescent social networks. Royal Society Open Science, 2017, 4, 170336.	2.4	10
32	How predictable are flu pandemics?. Significance, 2017, 14, 28-33.	0.4	2
33	Spreading of healthy mood in adolescent social networks. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151180.	2.6	28