Mehdi Asheghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3828216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiobjective Optimization of Graded, Hybrid Micropillar Wicks for Capillary-Fed Evaporation. Langmuir, 2022, 38, 221-230.	3.5	2
2	Non ontact Mass Density and Thermal Conductivity Measurements of Organic Thin Films Using Frequency–Domain Thermoreflectance. Advanced Materials Interfaces, 2022, 9, .	3.7	4
3	Performance and Manufacturing of Silicon-Based Vapor Chambers. Applied Mechanics Reviews, 2021, 73,	10.1	14
4	Thermal Interface Enhancement via Inclusion of an Adhesive Layer Using Plasma-Enhanced Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2021, 13, 21905-21913.	8.0	5
5	Simultaneous thickness and thermal conductivity measurements of thinned silicon from 100 nm to 17 <i>μ</i> m. Applied Physics Letters, 2021, 118, .	3.3	5
6	Uncovering Thermal and Electrical Properties of Sb ₂ Te ₃ /GeTe Superlattice Films. Nano Letters, 2021, 21, 5984-5990.	9.1	31
7	Thermal Characterization of Metal–Oxide Interfaces Using Time-Domain Thermoreflectance with Nanograting Transducers. ACS Applied Materials & Interfaces, 2021, 13, 58059-58065.	8.0	7
8	Mechanical Design and Reliability of Gold-Tin Eutectic Bonding for Silicon-based Thermal Management Devices. , 2020, , .		0
9	Considerations and Challenges for Large Area Embedded Micro-channels with 3D Manifold in High Heat Flux Power Electronics Applications. , 2020, , .		4
10	Microfabrication Challenges for Silicon-based Large Area (>500 mm ²) 3D-manifolded Embedded Microcooler Devices for High Heat Flux Removal. , 2020, , .		2
11	Tunable Dielectric and Thermal Properties of Oxide Dielectrics via Substrate Biasing in Plasma-Enhanced Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 44912-44918.	8.0	8
12	Tungsten-doped Ge2Sb2Te5 phase change material for high-speed optical switching devices. Applied Physics Letters, 2020, 116, .	3.3	16
13	Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-Three-Dimensional Manifold Coolers—Part 2: Parametric Study of EMMCs for High Heat Flux (â^1⁄41 kW/cm2) Power Electronics Cooling. Journal of Electronic Packaging, Transactions of the ASME 2020, 142	1.8	2
14	Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel Three-Dimensional-Manifold Coolers (EMMC)â€"Part 3: Addressing Challenges in Laser Micromachining-Based Manufacturing of Three-Dimensional-Manifolded Microcooler Devices. Journal of Electronic Packaging, Transactions of the ASME, 2020, 142	1.8	2
15	Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-3D Manifold Coolers (EMMCs): Part 1—Experimental Study of Single-Phase Cooling Performance With R-245fa. Journal of Electronic Packaging, Transactions of the ASME, 2020, 142, .	1.8	3
16	Understanding the switching mechanism of interfacial phase change memory. Journal of Applied Physics, 2019, 125, .	2.5	35
17	Quasi-Ballistic Thermal Transport Across MoS ₂ Thin Films. Nano Letters, 2019, 19, 2434-2442.	9.1	61
18	Tunable, passive thermal regulation through liquid to vapor phase change. Applied Physics Letters, 2019, 115, .	3.3	8

Mehdi Asheghi

#	Article	IF	CITATIONS
19	Experimental Characterization of Microfabricated Thermoelectric Energy Harvesters for Smart Sensor and Wearable Applications. Advanced Materials Technologies, 2018, 3, 1700383.	5.8	17
20	Direct Visualization of Thermal Conductivity Suppression Due to Enhanced Phonon Scattering Near Individual Grain Boundaries. Nano Letters, 2018, 18, 3466-3472.	9.1	74
21	Modular heat sink for chip-scale GaN transistors in multilevel converters. , 2018, , .		8
22	Experimental Investigation of Embedded Micropin-Fins for Single-Phase Heat Transfer and Pressure Drop. Journal of Electronic Packaging, Transactions of the ASME, 2018, 140, .	1.8	14
23	Thermal Management Research $\hat{a} \in \hat{~}$ from Power Electronics to Portables. , 2018, , .		Ο
24	Improving the performance of Ge2Sb2Te5 materials via nickel doping: Towards RF-compatible phase-change devices. Applied Physics Letters, 2018, 113, 171903.	3.3	34
25	The Heat Conduction Renaissance. , 2018, , .		5
26	Enhanced Heat Transfer Using Microporous Copper Inverse Opals. Journal of Electronic Packaging, Transactions of the ASME, 2018, 140, .	1.8	11
27	Tailoring Permeability of Microporous Copper Structures through Template Sintering. ACS Applied Materials & Interfaces, 2018, 10, 30487-30494.	8.0	18
28	Enhanced Capillaryâ€Fed Boiling in Copper Inverse Opals via Template Sintering. Advanced Functional Materials, 2018, 28, 1803689.	14.9	46
29	A method for quantifying in plane permeability of porous thin films. Journal of Colloid and Interface Science, 2018, 530, 667-674.	9.4	5
30	Phonon conduction in GaN-diamond composite substrates. Journal of Applied Physics, 2017, 121, .	2.5	62
31	Enhanced Thermal Conduction Through Nanostructured Interfaces. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 134-144.	2.6	18
32	Phonon conduction in silicon nanobeams. Applied Physics Letters, 2017, 110, .	3.3	22
33	Extreme Twoâ€Phase Cooling from Laserâ€Etched Diamond and Conformal, Templateâ€Fabricated Microporous Copper. Advanced Functional Materials, 2017, 27, 1703265.	14.9	83
34	Microchannel cooling strategies for high heat flux (1 kW/cm ²) power electronic applications. , 2017, , .		23
35	Phonon Conduction in Silicon Nanobeam Labyrinths. Scientific Reports, 2017, 7, 6233.	3.3	28
36	Thermal conductivity measurements on suspended diamond membranes using picosecond and femtosecond time-domain thermoreflectance. , 2017, , .		10

Mehdi Asheghi

#	Article	IF	CITATIONS
37	Fabrication and Characterization of Bi2Te3-Based Chip-Scale Thermoelectric Energy Harvesting Devices. Journal of Electronic Materials, 2017, 46, 2844-2846.	2.2	14
38	Enhanced phonon scattering by nanovoids in high thermoelectric power factor polysilicon thin films. Applied Physics Letters, 2016, 109, .	3.3	20
39	Special Section on InterPACK 2015. Journal of Electronic Packaging, Transactions of the ASME, 2016, 138, .	1.8	0
40	Analytical model of graphene-enabled ultra-low power phase change memory. , 2016, , .		2
41	Characterization of the Thermal Conductivity of CVD Diamond for GaN-on-Diamond Devices. , 2016, , .		20
42	Optimization of hybrid wick structures for extreme spreading in high performance vapor chambers. , 2016, , .		3
43	Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices. Journal of Electronic Packaging, Transactions of the ASME, 2016, 138, .	1.8	60
44	Cross-Plane Phonon Conduction in Polycrystalline Silicon Films. Journal of Heat Transfer, 2015, 137, .	2.1	8
45	Chip-scale thermal energy harvester using Bi2Te3. , 2015, , .		6
46	Thermal characterization and analysis of microliter liquid volumes using the three-omega method. Review of Scientific Instruments, 2015, 86, 024901.	1.3	14
47	Fundamental Cooling Limits for High Power Density Gallium Nitride Electronics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 737-744.	2.5	100
48	Microfluidic Heat Exchangers for High Power Density GaN on SiC. , 2014, , .		5
49	Thermal Interface Resistance Measurements for GaN-on-Diamond Composite Substrates. , 2014, , .		13
50	Phonon scattering in strained transition layers for GaN heteroepitaxy. Physical Review B, 2014, 89, .	3.2	89
51	Mechanical and thermal properties of copper inverse opals for two-phase convection enhancement. , 2014, , .		3
52	A parametric study of Microporous Metal Matrix-Phase Change Material composite heat spreaders for transient thermal applications. , 2014, , .		7
53	Anisotropic and nonhomogeneous thermal conduction in 1 µm thick CVD diamond. , 2014, ,		5
54	Phase-separation of wetting fluids using nanoporous alumina membranes and micro-glass capillaries. , 2014, , .		3

Менді Азнесні

#	Article	IF	CITATIONS
55	Thermal conduction normal to thin silicon nitride films on diamond and GaN. , 2014, , .		8
56	Cooling Limits for GaN HEMT Technology. , 2013, , .		37
57	Phonon and electron transport through Ge2Sb2Te5 films and interfaces bounded by metals. Applied Physics Letters, 2013, 102, .	3.3	68
58	Improved Thermal Interfaces of GaN–Diamond Composite Substrates for HEMT Applications. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3, 79-85.	2.5	91
59	Thermal conduction inhomogeneity of nanocrystalline diamond films by dual-side thermoreflectance. Applied Physics Letters, 2013, 102, .	3.3	37
60	Phonon Conduction in Periodically Porous Silicon Nanobridges. Nanoscale and Microscale Thermophysical Engineering, 2012, 16, 199-219.	2.6	54
61	Phase and thickness dependent modulus of Ge ₂ Sb ₂ Te ₅ films down to 25 nm thickness. Applied Physics Letters, 2012, 100, 161905.	3.3	27
62	Electrothermal Modeling and Design Strategies for Multibit Phase-Change Memory. IEEE Transactions on Electron Devices, 2012, 59, 3561-3567.	3.0	28
63	Calibration methodology for interposing liquid coolants for infrared thermography of microprocessors. , 2012, , .		Ο
64	Phase purity and the thermoelectric properties of Ge2Sb2Te5 films down to 25 nm thickness. Journal of Applied Physics, 2012, 112, .	2.5	49
65	Thermal conduction properties of Mo/Si multilayers for extreme ultraviolet optics. Journal of Applied Physics, 2012, 112, 083504.	2.5	20
66	Temperature Dependent Thermal Resistances at GaN-Substrate Interfaces in GaN Composite Substrates. , 2012, , .		15
67	Thermal conductivity, anisotropy, and interface resistances of diamond on poly-AlN. , 2012, , .		2
68	Thermal characterization of GaN-on-diamond substrates for HEMT applications. , 2012, , .		12
69	A reliability study with infrared imaging of thermoelectric modules under thermal cycling. , 2012, , .		13
70	Nanoscale conformable coatings for enhanced thermal conduction of carbon nanotube films. , 2012, ,		2
71	Low Thermal Resistances at GaN–SiC Interfaces for HEMT Technology. IEEE Electron Device Letters, 2012, 33, 378-380.	3.9	82
72	Impact of Annealing on the Thermoelectric Properties of Ge2Sb2Te5 Films. Materials Research Society Symposia Proceedings, 2012, 1490, 223-228.	0.1	0

Менді Азнесні

#	Article	IF	CITATIONS
73	Effect of thermal cycling on commercial thermoelectric modules. , 2012, , .		9
74	Thermoelectric Characterization and Power Generation Using a Silicon-on-Insulator Substrate. Journal of Microelectromechanical Systems, 2012, 21, 4-6.	2.5	10
75	Grain Boundaries, Phase Impurities, and Anisotropic Thermal Conduction in Phase-Change Memory. IEEE Electron Device Letters, 2011, 32, 961-963.	3.9	16
76	Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films. Journal of Applied Physics, 2011, 109, .	2.5	72
77	Crystallization properties and their drift dependence in phase-change memory studied with a micro-thermal stage. Journal of Applied Physics, 2011, 110, .	2.5	15
78	Microthermal Stage for Electrothermal Characterization of Phase-Change Memory. IEEE Electron Device Letters, 2011, 32, 952-954.	3.9	11
79	High temperature thermal properties of thin tantalum nitride films. Applied Physics Letters, 2011, 99, .	3.3	36
80	Phase Change Memory. Proceedings of the IEEE, 2010, 98, 2201-2227.	21.3	1,420
81	Decoupled thermal resistances of phase change material and their impact on PCM devices. , 2010, , .		3
82	Thermal Boundary Resistance Measurements for Phase-Change Memory Devices. IEEE Electron Device Letters, 2010, 31, 56-58.	3.9	105
83	Thermal disturbance and its impact on reliability of phase-change memory studied by the micro-thermal stage. , 2010, , .		26
84	Thermal Conductivity Measurements and Modeling of Phase-Change Ge ₂ Sb ₂ Te ₅ Materials. Nanoscale and Microscale Thermophysical Engineering, 2009, 13, 88-98.	2.6	9
85	Experimental Investigation of Scaling Effect on Thermal Transport in Nanoscale Hot Spots. Nanoscale and Microscale Thermophysical Engineering, 2009, 13, 203-217.	2.6	4
86	Measurement of anisotropy in the thermal conductivity of Ge <inf>2</inf> Sb <inf>2</inf> Te <inf>5</inf> films. , 2009, , .		1
87	Thermal analyses of confined cell design for phase change random access memory (PCRAM). Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .	0.0	4
88	Experimental investigation of nanoscale thermal transport in hotspots at cryogenic temperatures. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .	0.0	0
89	Spatial frequency domain heat transfer analysis of hot spot spreading in convectively cooled microprocessors. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .	0.0	1
90	Heat Sinks With Enhanced Heat Transfer Capability for Electronic Cooling Applications. Journal of Electronic Packaging, Transactions of the ASME, 2006, 128, 285-290.	1.8	18

1

#	Article	IF	CITATIONS
91	Rapid Thermal Characterization of the High Thermal Conductivity Film Layers by the Film-on Substrate Technique. Journal of Electronic Packaging, Transactions of the ASME, 2006, 128, 125-129.	1.8	0

92 Comparison of thermal response of GMR sensor subjected to HBM and CDM transients. , 2004, , .