List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3828127/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage.<br>Current Biology, 2000, 10, 886-895.                          | 1.8  | 1,867     |
| 2  | ATM Activation by DNA Double-Strand Breaks Through the Mre11-Rad50-Nbs1 Complex. Science, 2005, 308, 551-554.                                                       | 6.0  | 1,218     |
| 3  | ATM Activation by Oxidative Stress. Science, 2010, 330, 517-521.                                                                                                    | 6.0  | 931       |
| 4  | The 3′ to 5′ Exonuclease Activity of Mre11 Facilitates Repair of DNA Double-Strand Breaks. Molecular<br>Cell, 1998, 1, 969-979.                                     | 4.5  | 793       |
| 5  | Direct Activation of the ATM Protein Kinase by the Mre11/Rad50/Nbs1 Complex. Science, 2004, 304, 93-96.                                                             | 6.0  | 653       |
| 6  | MDC1 Maintains Genomic Stability by Participating in the Amplification of ATM-Dependent DNA Damage<br>Signals. Molecular Cell, 2006, 21, 187-200.                   | 4.5  | 553       |
| 7  | Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex.<br>Genes and Development, 1999, 13, 1276-1288.                      | 2.7  | 471       |
| 8  | Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene, 2007, 26, 7741-7748.                                            | 2.6  | 456       |
| 9  | Mechanisms of ATM Activation. Annual Review of Biochemistry, 2015, 84, 711-738.                                                                                     | 5.0  | 374       |
| 10 | ATM functions at the peroxisome to induce pexophagy in response to ROS. Nature Cell Biology, 2015, 17, 1259-1269.                                                   | 4.6  | 361       |
| 11 | A forward chemical genetic screen reveals an inhibitor of the Mre11–Rad50–Nbs1 complex. Nature<br>Chemical Biology, 2008, 4, 119-125.                               | 3.9  | 340       |
| 12 | The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures Genes and Development, 1993, 7, 1521-1534. | 2.7  | 320       |
| 13 | The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends in Biochemical Sciences, 2012, 37, 15-22.                               | 3.7  | 289       |
| 14 | Sae2 Is an Endonuclease that Processes Hairpin DNA Cooperatively with the Mre11/Rad50/Xrs2 Complex.<br>Molecular Cell, 2007, 28, 638-651.                           | 4.5  | 253       |
| 15 | Direct DNA binding by Brca1. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6086-6091.                                  | 3.3  | 239       |
| 16 | Stimulation of V(D)J cleavage by high mobility group proteins. EMBO Journal, 1997, 16, 2665-2670.                                                                   | 3.5  | 234       |
| 17 | Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature, 2008, 453, 677-681.                                                            | 13.7 | 220       |
| 18 | Involvement of Human MOF in ATM Function. Molecular and Cellular Biology, 2005, 25, 5292-5305.                                                                      | 1.1  | 215       |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO Journal, 2010, 29, 3370-3380.                                                       | 3.5  | 197       |
| 20 | Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Research, 2014, 42, e19-e19.                                                                                | 6.5  | 197       |
| 21 | Mre11–Rad50–Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nature<br>Structural and Molecular Biology, 2010, 17, 1478-1485.                                                       | 3.6  | 195       |
| 22 | A mechanistic basis for Mre11-directed DNA joining at microhomologies. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6409-6414.                              | 3.3  | 181       |
| 23 | The Mre11/Rad50/Nbs1 Complex and Its Role as a DNA Double-Strand Break Sensor for ATM. Cell Cycle, 2005, 4, 737-740.                                                                                      | 1.3  | 163       |
| 24 | ATM activation in the presence of oxidative stressÂ. Cell Cycle, 2010, 9, 4805-4811.                                                                                                                      | 1.3  | 159       |
| 25 | Catalytic and Noncatalytic Roles of the CtIP Endonuclease in Double-Strand Break End Resection.<br>Molecular Cell, 2014, 54, 1022-1033.                                                                   | 4.5  | 158       |
| 26 | Single-Molecule Imaging Reveals How Mre11-Rad50-Nbs1 Initiates DNA Break Repair. Molecular Cell, 2017,<br>67, 891-898.e4.                                                                                 | 4.5  | 156       |
| 27 | Hyperthermia Activates a Subset of Ataxia-Telangiectasia Mutated Effectors Independent of DNA Strand<br>Breaks and Heat Shock Protein 70 Status. Cancer Research, 2007, 67, 3010-3017.                    | 0.4  | 153       |
| 28 | The P. furiosus Mre11/Rad50 Complex Promotes 5′ Strand Resection at a DNA Double-Strand Break. Cell,<br>2008, 135, 250-260.                                                                               | 13.5 | 146       |
| 29 | DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts. Nucleic Acids<br>Research, 1992, 20, 1457-1462.                                                                       | 6.5  | 145       |
| 30 | Mre11 Is Essential for the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes. Molecular<br>Cell, 2016, 64, 580-592.                                                                           | 4.5  | 144       |
| 31 | Cell-free V(D)J recombination. Nature, 1997, 388, 488-491.                                                                                                                                                | 13.7 | 136       |
| 32 | Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts. Molecular Cell, 2016, 64, 593-606.                                                | 4.5  | 131       |
| 33 | ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling.<br>EMBO Journal, 2014, 33, 482-500.                                                                   | 3.5  | 129       |
| 34 | Ctp1/CtIP and the MRN Complex Collaborate in the Initial Steps of Homologous Recombination.<br>Molecular Cell, 2007, 28, 351-352.                                                                         | 4.5  | 115       |
| 35 | Human Mre11/Human Rad50/Nbs1 and DNA Ligase Illα/XRCC1 Protein Complexes Act Together in an<br>Alternative Nonhomologous End Joining Pathway. Journal of Biological Chemistry, 2011, 286,<br>33845-33853. | 1.6  | 113       |
| 36 | 20 Years of Mre11 Biology: No End in Sight. Molecular Cell, 2018, 71, 419-427.                                                                                                                            | 4.5  | 108       |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO Journal, 2010, 29, 574-585.                                                                                                 | 3.5  | 105       |
| 38 | Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM. Molecular<br>Cell, 2017, 65, 91-104.                                                                                      | 4.5  | 105       |
| 39 | Cellular functions of the protein kinase ATM and their relevance to human disease. Nature Reviews<br>Molecular Cell Biology, 2021, 22, 796-814.                                                                | 16.1 | 105       |
| 40 | DNA Looping by Saccharomyces cerevisiae High Mobility Group Proteins NHP6A/B. Journal of Biological<br>Chemistry, 1995, 270, 8744-8754.                                                                        | 1.6  | 102       |
| 41 | Yeast HMG proteins NHP6A/B potentiate promoter-specific transcriptional activation in vivo and assembly of preinitiation complexes in vitro Genes and Development, 1996, 10, 2769-2781.                        | 2.7  | 102       |
| 42 | Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. Journal of Cell<br>Biology, 2008, 183, 777-783.                                                                          | 2.3  | 100       |
| 43 | Rad50 Adenylate Kinase Activity Regulates DNA Tethering by Mre11/Rad50 Complexes. Molecular Cell, 2007, 25, 647-661.                                                                                           | 4.5  | 94        |
| 44 | Loss of ATM kinase activity leads to embryonic lethality in mice. Journal of Cell Biology, 2012, 198,<br>295-304.                                                                                              | 2.3  | 94        |
| 45 | Ataxia Telangiectasia-Mutated (ATM) Kinase Activity Is Regulated by ATP-driven Conformational<br>Changes in the Mre11/Rad50/Nbs1 (MRN) Complex. Journal of Biological Chemistry, 2013, 288, 12840-12851.       | 1.6  | 92        |
| 46 | Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1. Journal of Cell Biology,<br>2014, 206, 877-894.                                                                                 | 2.3  | 92        |
| 47 | DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Science Advances, 2020,<br>6, eaay0922.                                                                                              | 4.7  | 92        |
| 48 | Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes and Development, 2019, 33, 1751-1774.                             | 2.7  | 89        |
| 49 | ATM directs DNA damage responses and proteostasis via genetically separable pathways. Science Signaling, 2018, 11, .                                                                                           | 1.6  | 87        |
| 50 | The Rad50 Signature Motif: Essential to ATP Binding and Biological Function. Journal of Molecular<br>Biology, 2004, 335, 937-951.                                                                              | 2.0  | 85        |
| 51 | CtIP: A DNA damage response protein at the intersection of DNA metabolism. DNA Repair, 2015, 32, 75-81.                                                                                                        | 1.3  | 83        |
| 52 | Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Research, 2006, 34, 2751-2760.                                                          | 6.5  | 82        |
| 53 | Regulation of Mre11/Rad50 by Nbs1. Journal of Biological Chemistry, 2003, 278, 45171-45181.                                                                                                                    | 1.6  | 81        |
| 54 | Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1170-9. | 3.3  | 81        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis. Nature Communications, 2020, 11, 857.                                                                                 | 5.8 | 81        |
| 56 | MRI Is a DNA Damage Response Adaptor during Classical Non-homologous End Joining. Molecular Cell, 2018, 71, 332-342.e8.                                                                              | 4.5 | 76        |
| 57 | ATM Protein-dependent Phosphorylation of Rad50 Protein Regulates DNA Repair and Cell Cycle<br>Control. Journal of Biological Chemistry, 2011, 286, 31542-31556.                                      | 1.6 | 74        |
| 58 | The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1. EMBO Journal, 2012, 32, 126-139.                                                                      | 3.5 | 74        |
| 59 | RPA Phosphorylation Inhibits DNA Resection. Molecular Cell, 2019, 75, 145-153.e5.                                                                                                                    | 4.5 | 73        |
| 60 | Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Science Signaling, 2018, 11, .                                                                                | 1.6 | 71        |
| 61 | Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection. DNA Repair, 2010, 9, 1283-1291.                                                         | 1.3 | 70        |
| 62 | Targeting p38α Increases DNA Damage, Chromosome Instability, and the Anti-tumoral Response to<br>Taxanes in Breast Cancer Cells. Cancer Cell, 2018, 33, 1094-1110.e8.                                | 7.7 | 70        |
| 63 | ZMYM3 regulates BRCA1 localization at damaged chromatin to promote DNA repair. Genes and Development, 2017, 31, 260-274.                                                                             | 2.7 | 65        |
| 64 | EXD2 promotes homologous recombination by facilitating DNA end resection. Nature Cell Biology, 2016, 18, 271-280.                                                                                    | 4.6 | 61        |
| 65 | DNA-dependent Protein Kinase Regulates DNA End Resection in Concert with Mre11-Rad50-Nbs1 (MRN)<br>and Ataxia Telangiectasia-mutated (ATM). Journal of Biological Chemistry, 2013, 288, 37112-37125. | 1.6 | 58        |
| 66 | Visualization of local DNA unwinding by Mre11/Rad50/Nbs1 using single-molecule FRET. Proceedings of the United States of America, 2013, 110, 18868-18873.                                            | 3.3 | 55        |
| 67 | Sae2/CtIP prevents R-loop accumulation in eukaryotic cells. ELife, 2018, 7, .                                                                                                                        | 2.8 | 55        |
| 68 | The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae.<br>DNA Repair, 2005, 4, 1281-1294.                                                                | 1.3 | 53        |
| 69 | Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biology, 2020, 32, 101511.                                                          | 3.9 | 50        |
| 70 | The Mre11/Rad50/Nbs1 complex: Recent insights into catalytic activities and ATP-driven conformational changes. Experimental Cell Research, 2014, 329, 139-147.                                       | 1.2 | 44        |
| 71 | Proteome-wide identification of HSP70/HSC70 chaperone clients in human cells. PLoS Biology, 2020, 18, e3000606.                                                                                      | 2.6 | 43        |
| 72 | Phosphorylation-Regulated Transitions in an Oligomeric State Control the Activity of the Sae2 DNA<br>Repair Enzyme. Molecular and Cellular Biology, 2014, 34, 778-793.                               | 1.1 | 41        |

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Homology-directed repair protects the replicating genome from metabolic assaults. Developmental<br>Cell, 2021, 56, 461-477.e7.                                          | 3.1  | 38        |
| 74 | Purification and Biochemical Characterization of Ataxiaâ€Telangiectasia Mutated and Mre11/Rad50/Nbs1.<br>Methods in Enzymology, 2006, 408, 529-539.                     | 0.4  | 36        |
| 75 | Functional Activation of ATM by the Prostate Cancer Suppressor NKX3.1. Cell Reports, 2013, 4, 516-529.                                                                  | 2.9  | 33        |
| 76 | BRCA1 and CtIP Are Both Required to Recruit Dna2 at Double-Strand Breaks in Homologous Recombination. PLoS ONE, 2015, 10, e0124495.                                     | 1.1  | 33        |
| 77 | Damage-induced BRCA1 phosphorylation by Chk2 contributes to the timing of end resection. Cell Cycle, 2015, 14, 437-448.                                                 | 1.3  | 33        |
| 78 | Poly-ADP-ribosylation drives loss of protein homeostasis in ATM and Mre11 deficiency. Molecular Cell, 2021, 81, 1515-1533.e5.                                           | 4.5  | 33        |
| 79 | Redox activation of ATM enhances CSNOR translation to sustain mitophagy and tolerance to oxidative stress. EMBO Reports, 2021, 22, e50500.                              | 2.0  | 30        |
| 80 | Ancient and Recent Adaptive Evolution of Primate Non-Homologous End Joining Genes. PLoS Genetics, 2010, 6, e1001169.                                                    | 1.5  | 28        |
| 81 | Sumoylation Influences DNA Break Repair Partly by Increasing the Solubility of a Conserved End Resection Protein. PLoS Genetics, 2015, 11, e1004899.                    | 1.5  | 27        |
| 82 | Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites. Nucleic<br>Acids Research, 2017, 45, 5255-5268.                          | 6.5  | 27        |
| 83 | Saving the Ends for Last: The Role of Pol Î $^{1}\!4$ in DNA End Joining. Molecular Cell, 2005, 19, 294-296.                                                            | 4.5  | 26        |
| 84 | Direct Activation of ATM by Resveratrol under Oxidizing Conditions. PLoS ONE, 2014, 9, e97969.                                                                          | 1.1  | 26        |
| 85 | HU and functional analogs in eukaryotes promote Hin invertasome assembly. Biochimie, 1994, 76, 992-1004.                                                                | 1.3  | 22        |
| 86 | V(D)J Recombination: Links to Transposition and Double-strand Break Repair. Cold Spring Harbor<br>Symposia on Quantitative Biology, 1999, 64, 161-168.                  | 2.0  | 22        |
| 87 | Proteome-wide Detection and Quantitative Analysis of Irreversible Cysteine Oxidation Using Long<br>Column UPLC-pSRM. Journal of Proteome Research, 2013, 12, 4302-4315. | 1.8  | 22        |
| 88 | New Glimpses of an Old Machine. Cell, 2001, 107, 563-565.                                                                                                               | 13.5 | 19        |
| 89 | Direct measurement of single-stranded DNA intermediates in mammalian cells by quantitative polymerase chain reaction. Analytical Biochemistry, 2015, 479, 48-50.        | 1.1  | 19        |
| 90 | RNA–DNA hybrids and the convergence with DNA repair. Critical Reviews in Biochemistry and<br>Molecular Biology, 2019, 54, 371-384.                                      | 2.3  | 19        |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | The ARK Assay Is a Sensitive and Versatile Method for the Global Detection of DNA-Protein Crosslinks.<br>Cell Reports, 2020, 30, 1235-1245.e4.                                                     | 2.9  | 18        |
| 92  | Tails of histones lost. Nature, 2006, 439, 406-407.                                                                                                                                                | 13.7 | 17        |
| 93  | Genetic Separation of Sae2 Nuclease Activity from Mre11 Nuclease Functions in Budding Yeast.<br>Molecular and Cellular Biology, 2017, 37, .                                                        | 1.1  | 13        |
| 94  | Reconsidering pathway choice: a sequential model of mammalian DNA double-strand break pathway decisions. Current Opinion in Genetics and Development, 2021, 71, 55-62.                             | 1.5  | 12        |
| 95  | Homeodomain Proteins Directly Regulate ATM Kinase Activity. Cell Reports, 2018, 24, 1471-1483.                                                                                                     | 2.9  | 7         |
| 96  | The Cancer-Associated ATM R3008H Mutation Reveals the Link between ATM Activation and Its Exchange. Cancer Research, 2021, 81, 426-437.                                                            | 0.4  | 7         |
| 97  | The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells<br>Independent of Any Repair Defect. Cell Reports, 2017, 21, 979-993.                           | 2.9  | 6         |
| 98  | Purification and Biophysical Characterization of the Mre11-Rad50-Nbs1 Complex. Methods in Molecular<br>Biology, 2019, 2004, 269-287.                                                               | 0.4  | 6         |
| 99  | DNA damage and regulation of protein homeostasis. DNA Repair, 2021, 105, 103155.                                                                                                                   | 1.3  | 6         |
| 100 | Quantifying DNA End Resection in Human Cells. Methods in Molecular Biology, 2021, 2153, 59-69.                                                                                                     | 0.4  | 5         |
| 101 | Growth-Regulated Hsp70 Phosphorylation Regulates Stress Responses and Prion Maintenance.<br>Molecular and Cellular Biology, 2020, 40, .                                                            | 1.1  | 4         |
| 102 | Rad17, the clamp loader that loads more than clamps. EMBO Journal, 2014, 33, 783-785.                                                                                                              | 3.5  | 3         |
| 103 | Upregulation ofE. coli 38kDa proteins induced by glutaraldehyde and formaldehyde. Current<br>Microbiology, 1990, 21, 117-121.                                                                      | 1.0  | 2         |
| 104 | Characterization of DNA-PK-Bound End Fragments Using GLASS-ChIP. Methods in Molecular Biology, 2022, 2444, 171-182.                                                                                | 0.4  | 2         |
| 105 | Correction for Fu et al., Phosphorylation-Regulated Transitions in an Oligomeric State Control the<br>Activity of the Sae2 DNA Repair Enzyme. Molecular and Cellular Biology, 2014, 34, 4213-4213. | 1.1  | 0         |
| 106 | Visualizing the First Steps of Human Double-Strand Break Repair on a Crowded DNA Track. Biophysical<br>Journal, 2016, 110, 65a.                                                                    | 0.2  | 0         |
| 107 | The Mre11/Rad50 complex and its roles in processing of DNA doubleâ€strand breaks. FASEB Journal, 2008, 22, 405.2.                                                                                  | 0.2  | 0         |
| 108 | Characterization of DNA-PK-bound end fragments using GLASS-ChIP. Methods in Enzymology, 2021, 661, 205-217.                                                                                        | 0.4  | 0         |