Philippe François-Xavier Corvini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3828050/publications.pdf

Version: 2024-02-01

Philippe François-Xavier

#	Article	IF	CITATIONS
1	A proteolytic nanobiocatalyst with built-in disulphide reducing properties. RSC Advances, 2021, 11, 810-816.	1.7	0
2	Biodegradation of antibiotics: The new resistance determinants – part I. New Biotechnology, 2020, 54, 34-51.	2.4	97
3	Biodegradation of antibiotics: The new resistance determinants – part II. New Biotechnology, 2020, 54, 13-27.	2.4	53
4	Biodegradation of ritalinic acid by Nocardioides sp. – Novel imidazole-based alkaloid metabolite as a potential marker in sewage epidemiology. Journal of Hazardous Materials, 2020, 385, 121554.	6.5	3
5	Living with sulfonamides: a diverse range of mechanisms observed in bacteria. Applied Microbiology and Biotechnology, 2020, 104, 10389-10408.	1.7	33
6	Transformation of catechol coupled to redox alteration of humic acids and the effects of Cu and Fe cations. Science of the Total Environment, 2020, 725, 138245.	3.9	3
7	Degradation and transformation of nitrated nonylphenol isomers in activated sludge under nitrifying and heterotrophic conditions. Journal of Hazardous Materials, 2020, 393, 122438.	6.5	4
8	Fate of 2,4,6-Tribromophenol in Soil Under Different Redox Conditions. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 707-713.	1.3	2
9	Fate of 4-bromodiphenyl ether (BDE3) in soil and the effects of co-existed copper. Environmental Pollution, 2020, 261, 114214.	3.7	6
10	Biodegradation of Polyethylene and Polystyrene by Greater Wax Moth Larvae (<i>Galleria) Tj ETQq0 0 0 rgBT /Ove Environmental Science & Technology, 2020, 54, 2821-2831.</i>	erlock 10 4.6	Tf 50 387 Td 154
11	Partially shielded enzymes capable of processing large protein substrates. Chemical Communications, 2020, 56, 5170-5173.	2.2	6
12	Fate of lower-brominated diphenyl ethers (LBDEs) in a red soil – Application of 14C-labelling. Science of the Total Environment, 2020, 721, 137735.	3.9	5
13	Influence of the geophagous earthworm Aporrectodea sp. on fate of bisphenol A and a branched 4-nonylphenol isomer in soil. Science of the Total Environment, 2019, 693, 133574.	3.9	10
14	Release of tetrabromobisphenol A (TBBPA)-derived non-extractable residues in oxic soil and the effects of the TBBPA-degrading bacterium Ochrobactrum sp. strain T. Journal of Hazardous Materials, 2019, 378, 120666.	6.5	15
15	Nootropic drugs: Methylphenidate, modafinil and piracetam – Population use trends, occurrence in the environment, ecotoxicity and removal methods – A review. Chemosphere, 2019, 233, 771-785.	4.2	38
16	Biodegradation of mixture of plastic films by tailored marine consortia. Journal of Hazardous Materials, 2019, 375, 33-42.	6.5	91
17	Reversibility of enzymatic reactions might limit biotransformation of organic micropollutants. Science of the Total Environment, 2019, 665, 574-578.	3.9	25
18	Comparative genomics reveals a novel genetic organization of the sad cluster in the sulfonamide-degrader â€~Candidatus Leucobacter sulfamidivorax' strain GP. BMC Genomics, 2019, 20, 885.	1.2	13

#	Article	IF	CITATIONS
19	Biotransformation of Sulfonamide Antibiotics in Activated Sludge: The Formation of Pterin-Conjugates Leads to Sustained Risk. Environmental Science & Technology, 2018, 52, 6265-6274.	4.6	101
20	Isolation of two Ochrobactrum sp. strains capable of degrading the nootropic drug—Piracetam. New Biotechnology, 2018, 43, 37-43.	2.4	15
21	Biotransformation of ritalinic acid by laccase in the presence of mediator TEMPO. New Biotechnology, 2018, 43, 44-52.	2.4	11
22	Bacterial isolates degrading ritalinic acid—human metabolite of neuro enhancer methylphenidate. New Biotechnology, 2018, 43, 30-36.	2.4	10
23	Environmental Sciences at Universities of Applied Sciences. Chimia, 2018, 72, 652.	0.3	0
24	Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp. GP. Applied Microbiology and Biotechnology, 2018, 102, 10299-10314.	1.7	36
25	The crystal structures of native hydroquinone 1,2-dioxygenase from Sphingomonas sp. TTNP3 and of substrate and inhibitor complexes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 520-530.	1.1	4
26	Formation, characterization, and mineralization of bound residues of tetrabromobisphenol A (TBBPA) in silty clay soil under oxic conditions. Science of the Total Environment, 2017, 599-600, 332-339.	3.9	20
27	FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Scientific Reports, 2017, 7, 15783.	1.6	66
28	Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment. New Biotechnology, 2017, 38, 101-105.	2.4	81
29	Biodegradation of weathered polystyrene films in seawater microcosms. Scientific Reports, 2017, 7, 17991.	1.6	121
30	Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLoS ONE, 2017, 12, e0183984.	1.1	82
31	Enzyme Shielding in an Enzymeâ€ŧhin and Soft Organosilica Layer. Angewandte Chemie - International Edition, 2016, 55, 6285-6289.	7.2	39
32	Elucidation of biotransformation of diclofenac and 4′hydroxydiclofenac during biological wastewater treatment. Journal of Hazardous Materials, 2016, 301, 443-452.	6.5	64
33	A cyclodextrin-based polymer for sensing diclofenac in water. Journal of Hazardous Materials, 2015, 299, 412-416.	6.5	20
34	Ipso-substitution — the hidden gate to xenobiotic degradation pathways. Current Opinion in Biotechnology, 2015, 33, 220-227.	3.3	9
35	Enhanced Transformation of Tetrabromobisphenol A by Nitrifiers in Nitrifying Activated Sludge. Environmental Science & Technology, 2015, 49, 4283-4292.	4.6	53
36	Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 – elucidating the downstream pathway. New Biotechnology, 2015, 32, 710-715.	2.4	37

Philippe François-Xavier

#	Article	IF	CITATIONS
37	Fate of Tetrabromobisphenol A (TBBPA) and Formation of Ester- and Ether-Linked Bound Residues in an Oxic Sandy Soil. Environmental Science & Technology, 2015, 49, 12758-12765.	4.6	77
38	Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. Journal of Hazardous Materials, 2014, 280, 741-749.	6.5	168
39	Fate and metabolism of tetrabromobisphenol A in soil slurries without and with the amendment with the alkylphenol degrading bacterium Sphingomonas sp. strain TTNP3. Environmental Pollution, 2014, 193, 181-188.	3.7	60
40	Degradation and Metabolism of Tetrabromobisphenol A (TBBPA) in Submerged Soil and Soil–Plant Systems. Environmental Science & Technology, 2014, 48, 14291-14299.	4.6	98
41	Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Current Opinion in Biotechnology, 2014, 27, 8-14.	3.3	82
42	Laccases to take on the challenge of emerging organic contaminants in wastewater. Applied Microbiology and Biotechnology, 2014, 98, 9931-9952.	1.7	92
43	Advanced enzymatic elimination of phenolic contaminants in wastewater: a nano approach at field scale. Applied Microbiology and Biotechnology, 2014, 98, 3305-3316.	1.7	49
44	A synthetic nanomaterial for virus recognition produced by surface imprinting. Nature Communications, 2013, 4, 1503.	5.8	136
45	Isolation of Bacterial Strains Capable of Sulfamethoxazole Mineralization from an Acclimated Membrane Bioreactor. Applied and Environmental Microbiology, 2012, 78, 277-279.	1.4	100
46	Design of Cyclodextrin-Based Photopolymers with Enhanced Molecular Recognition Properties: A Template-Free High-Throughput Approach. Macromolecules, 2012, 45, 5692-5697.	2.2	15
47	Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Research, 2008, 42, 2184-2194.	5.3	133