Moustafa Bensafi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3827948/publications.pdf

Version: 2024-02-01

		126907	138484
111	4,131	33	58
papers	citations	h-index	g-index
118	118	118	3150
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Using a bio-inspired surface resonance plasmon electronic nose for fundamental research on human olfaction. Sensors and Actuators B: Chemical, 2022, 350, 130846.	7.8	5
2	Identification of new behavioral parameters to assess odorant hedonic value in humans: A naturalistic approach. Journal of Neuroscience Methods, 2022, 366, 109422.	2.5	3
3	An olfactory self-test effectively screens for COVID-19. Communications Medicine, 2022, 2, .	4.2	10
4	And I'm feeling good: effect of emotional sweat and perfume on others' physiology, verbal responses, and creativity. Chemical Senses, 2022, 47, .	2.0	5
5	Olfactory and Gustatory Function in Patients With Different Types of Maxillofacial Trauma. Laryngoscope, 2021, 131, E331-E337.	2.0	3
6	On the contribution of the senses to food emotional experience. Food Quality and Preference, 2021, 92, 104120.	4.6	15
7	Chemotherapy-induced taste and smell changes influence food perception in cancer patients. Supportive Care in Cancer, 2021, 29, 2125-2132.	2.2	26
8	Senses and emotion. , 2021, , 85-110.		0
9	Perceived utility of electronic noses in patients with loss of smell. European Archives of Oto-Rhino-Laryngology, 2021, 278, 2155-2156.	1.6	2
10	Configural memory of a blending aromatic mixture reflected in activation of the left orbital part of the inferior frontal gyrus. Behavioural Brain Research, 2021, 402, 113088.	2.2	7
11	Smells Influence Perceived Pleasantness but Not Memorization of a Visual Virtual Environment. I-Perception, 2021, 12, 204166952198973.	1.4	4
12	Neural processing of the reward value of pleasant odorants. Current Biology, 2021, 31, 1592-1605.e9.	3.9	24
13	Cognitive and hormonal regulation of appetite for food presented in the olfactory and visual modalities. Neurolmage, 2021, 230, 117811.	4.2	9
14	Data-science based analysis of perceptual spaces of odors in olfactory loss. Scientific Reports, 2021, 11, 10595.	3.3	3
15	The autumnal lockdown was not the main initiator of the decrease in SARS-CoV-2 circulation in France. Communications Medicine, 2021, 1, .	4.2	0
16	Explicit and implicit measures of emotions: Data-science might help to account for data complexity and heterogeneity. Food Quality and Preference, 2021, 92, 104181.	4.6	7
17	A historical review of olfactometry. Annee Psychologique, 2021, Vol. 121, 311-351.	0.3	0
18	The prevalence of olfactory deficits and their effects on eating behavior from childhood to old age: A large-scale study in the French population. Food Quality and Preference, 2021, 93, 104273.	4.6	10

#	Article	IF	CITATIONS
19	Eating behavior in autism: senses as a window towards food acceptance. Current Opinion in Food Science, 2021, 41, 210-216.	8.0	12
20	Recovery From COVID-19-Related Olfactory Disorders and Quality of Life: Insights From an Observational Online Study. Chemical Senses, 2021, 46, .	2.0	18
21	Accounting for Subjectivity in Experimental Research on Human Olfaction. Chemical Senses, 2021, 46, .	2.0	3
22	Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. Chemical Senses, 2021, 46, .	2.0	119
23	African Gene Flow Reduces Beta-Ionone Anosmia/Hyposmia Prevalence in Admixed Malagasy Populations. Brain Sciences, 2021, 11, 1405.	2.3	1
24	La rééducation olfactiveÂ: bénéfices d'une prise en soins pluri-professionnelle. La Presse Médicale Formation, 2021, 3, 5-5.	0.1	1
25	Neural processing of odor-associated words: an fMRI study in patients with acquired olfactory loss. Brain Imaging and Behavior, 2020, 14, 1164-1174.	2.1	10
26	Smell and taste changes are early indicators of the COVID-19 pandemic and political decision effectiveness. Nature Communications, 2020, 11, 5152.	12.8	74
27	An experimental investigation comparing a surface plasmon resonance imaging-based artificial nose with natural olfaction. Sensors and Actuators B: Chemical, 2020, 320, 128342.	7.8	9
28	More Than Smellâ€"COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chemical Senses, 2020, 45, 609-622.	2.0	375
29	Visual Priming Influences Olfactomotor Response and Perceptual Experience of Smells. Chemical Senses, 2020, 45, 211-218.	2.0	5
30	A methodological investigation of a flexible surface MRI coil to obtain functional signals from the human olfactory bulb. Journal of Neuroscience Methods, 2020, 335, 108624.	2.5	3
31	Interdisciplinary challenges for elucidating human olfactory attractiveness. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190268.	4.0	22
32	Relationship Between Odor Intensity Estimates and COVID-19 Prevalence Prediction in a Swedish Population. Chemical Senses, 2020, 45, 449-456.	2.0	53
33	Relationship between food behavior and taste and smell alterations in cancer patients undergoing chemotherapy: A structured review. Seminars in Oncology, 2019, 46, 160-172.	2.2	38
34	Individual Differences as a Key Factor to Uncover the Neural Underpinnings of Hedonic and Social Functions of Human Olfaction: Current Findings from PET and fMRI Studies and Future Considerations. Brain Topography, 2019, 32, 977-986.	1.8	15
35	Influence of gender and culture on the perception of acidic compounds of human body odor. Physiology and Behavior, 2019, 210, 112561.	2.1	8
36	The role of hedonics in the Human Affectome. Neuroscience and Biobehavioral Reviews, 2019, 102, 221-241.	6.1	38

#	Article	IF	Citations
37	Chemical features mining provides new descriptive structure-odor relationships. PLoS Computational Biology, 2019, 15, e1006945.	3.2	34
38	Visual and Hedonic Perception of Food Stimuli in Children with Autism Spectrum Disorders and their Relationship to Food Neophobia. Perception, 2019, 48, 197-213.	1.2	12
39	Effects of familiarization on odor hedonic responses and food choices in children with autism spectrum disorders. Autism, 2019, 23, 1460-1471.	4.1	15
40	Non-imaged based method for matching brains in a common anatomical space for cellular imagery. Journal of Neuroscience Methods, 2018, 304, 136-145.	2.5	8
41	Structural Plasticity of the Primary and Secondary Olfactory cortices: Increased Gray Matter Volume Following Surgical Treatment for Chronic Rhinosinusitis. Neuroscience, 2018, 395, 22-34.	2.3	12
42	Impaired Odor Perception in Autism Spectrum Disorder Is Associated with Decreased Activity in Olfactory Cortex. Chemical Senses, 2018, 43, 627-634.	2.0	42
43	Pleasantness and trigeminal sensations as salient dimensions in organizing the semantic and physiological spaces of odors. Scientific Reports, 2018, 8, 8444.	3.3	36
44	Exceptional Attributed Subgraph Mining to Understand the Olfactory Percept. Lecture Notes in Computer Science, 2018, , 276-291.	1.3	1
45	Individual Differences in Verbal and Non-Verbal Affective Responses to Smells: Influence of Odor Label Across Cultures. Chemical Senses, 2017, 42, bjw098.	2.0	22
46	Expertise shapes domainâ€specific functional cerebral asymmetry during mental imagery: the case of culinary arts and music. European Journal of Neuroscience, 2017, 45, 1524-1537.	2.6	6
47	Relationship Between Psychophysiological Responses to Aversive Odors and Nutritional Status During Normal Aging. Chemical Senses, 2017, 42, 465-472.	2.0	13
48	Dysosmia-Associated Changes in Eating Behavior. Chemosensory Perception, 2017, 10, 104-113.	1.2	29
49	Learning to name smells increases activity in heteromodal semantic areas. Human Brain Mapping, 2017, 38, 5958-5969.	3.6	12
50	Detection of sickness in conspecifics using olfactory and visual cues. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6157-6159.	7.1	11
51	The Role of the Senses in Emotion. , 2016, , 65-81.		3
52	Multidimensional representation of odors in the human olfactory cortex. Human Brain Mapping, 2016, 37, 2161-2172.	3.6	38
53	The Social Nose: Importance of Olfactory Perception in Group Dynamics and Relationships. Psychological Inquiry, 2016, 27, 299-305.	0.9	3
54	Local Subgroup Discovery for Eliciting and Understanding New Structure-Odor Relationships. Lecture Notes in Computer Science, 2016, , 19-34.	1.3	10

#	Article	IF	Citations
55	Application of the European Test of Olfactory Capabilities in patients with olfactory impairment. European Archives of Oto-Rhino-Laryngology, 2016, 273, 381-390.	1.6	20
56	h(odor): Interactive Discovery of Hypotheses on the Structure-Odor Relationship in Neuroscience. Lecture Notes in Computer Science, 2016, , 17-21.	1.3	0
57	Altered Affective Evaluations of Smells in Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 49, 433-441.	2.6	11
58	Viewing Olfactory Affective Responses Through the Sniff Prism: Effect of Perceptual Dimensions and Age on Olfactomotor Responses to Odors. Frontiers in Psychology, 2015, 6, 1776.	2.1	12
59	Odor Perception in Children with Autism Spectrum Disorder and its Relationship to Food Neophobia. Frontiers in Psychology, 2015, 6, 1830.	2.1	51
60	Dissociated neural representations induced by complex and simple odorant molecules. Neuroscience, 2015, 287, 23-31.	2.3	14
61	Hedonic appreciation and verbal description of pleasant and unpleasant odors in untrained, trainee cooks, flavorists, and perfumers. Frontiers in Psychology, 2014, 5, 12.	2.1	26
62	Repeated exposure to odors induces affective habituation of perception and sniffing. Frontiers in Behavioral Neuroscience, 2014, 8, 119.	2.0	37
63	The effect of verbal context on olfactory neural responses. Human Brain Mapping, 2014, 35, 810-818.	3.6	26
64	A pleasant familiar odor influences perceived stress and peripheral nervous system activity during normal aging. Frontiers in Psychology, 2014, 5, 113.	2.1	14
65	Does olfactory specific satiety take place in a natural setting?. Appetite, 2013, 60, 1-4.	3.7	27
66	A portable experimental apparatus for human olfactory fMRI experiments. Journal of Neuroscience Methods, 2013, 218, 29-38.	2.5	33
67	Cisplatin chemotherapy induces odor perception changes in bronchial cancer patients. Lung Cancer, 2013, 82, 168-170.	2.0	18
68	Cross-modal integration of emotions in the chemical senses. Frontiers in Human Neuroscience, 2013, 7, 883.	2.0	21
69	Olfactory and Gustatory Mental Imagery: Modulation by Sensory Experience and Comparison to Auditory Mental Imagery., 2013,, 77-91.		9
70	Effect of Aging on Hedonic Appreciation of Pleasant and Unpleasant Odors. PLoS ONE, 2013, 8, e61376.	2.5	46
71	Dissociated Representations of Pleasant and Unpleasant Olfacto-Trigeminal Mixtures: An fMRI Study. PLoS ONE, 2012, 7, e38358.	2.5	38
72	The Role of the Piriform Cortex in Human Olfactory Perception: Insights from Functional Neuroimaging Studies. Chemosensory Perception, 2012, 5, 4-10.	1.2	19

#	Article	IF	CITATIONS
73	Molecular complexity determines the number of olfactory notes and the pleasantness of smells. Scientific Reports, 2011, 1, 206.	3.3	89
74	Ontogeny of Odor Liking during Childhood and Its Relation to Language Development. Chemical Senses, 2011, 36, 83-91.	2.0	22
75	Physicochemical influence on odor hedonics. Communicative and Integrative Biology, 2011, 4, 563-565.	1.4	17
76	Physicochemical influence on odor hedonics: Where does it occur first?. Communicative and Integrative Biology, 2011, 4, 563-5.	1.4	14
77	Semantic Knowledge Influences Prewired Hedonic Responses to Odors. PLoS ONE, 2010, 5, e13878.	2.5	32
78	The effect of early experience on odor perception in humans: Psychological and physiological correlates. Behavioural Brain Research, 2010, 208, 458-465.	2.2	41
79	Global Features of Neural Activity in the Olfactory System Form a Parallel Code That Predicts Olfactory Behavior and Perception. Journal of Neuroscience, 2010, 30, 9017-9026.	3.6	86
80	Humans and Mice Express Similar Olfactory Preferences. PLoS ONE, 2009, 4, e4209.	2.5	78
81	Perceptual and Sensorimotor Differences between "Good―and "Poor―Olfactory Mental Imagers. Annals of the New York Academy of Sciences, 2009, 1170, 333-337.	3.8	16
82	Odor hedonics and their modulators. Food Quality and Preference, 2009, 20, 545-549.	4.6	50
83	Increase in Anhedonia Level in Menopausal Women is Accompanied by a Shift in Olfactory Function. Chemosensory Perception, 2008, 1, 43-47.	1.2	13
84	Improved smell pleasantness after odor–taste associative learning in humans. Neuroscience Letters, 2008, 434, 108-112.	2.1	25
85	Neural coding of stimulus concentration in the human olfactory and intranasal trigeminal systems. Neuroscience, 2008, 154, 832-838.	2.3	64
86	Synergy and Masking in Odor Mixtures: An Electrophysiological Study of Orthonasal vs. Retronasal Perception. Chemical Senses, 2008, 33, 553-561.	2.0	31
87	Which format for odor images?. Chemical Senses, 2008, 34, 11-13.	2.0	18
88	Individual Differences in Odor Imaging Ability Reflect Differences in Olfactory and Emotional Perception. Chemical Senses, 2007, 32, 237-244.	2.0	55
89	Verbal Cues Modulate Hedonic Perception of Odors in 5-Year-Old Children as well as in Adults. Chemical Senses, 2007, 32, 855-862.	2.0	71
90	Hedonic-Specific Activity in Piriform Cortex During Odor Imagery Mimics That During Odor Perception. Journal of Neurophysiology, 2007, 98, 3254-3262.	1.8	133

#	Article	IF	CITATIONS
91	Olfactory function in children assessed with psychophysical and electrophysiological techniques. Behavioural Brain Research, 2007, 180, 133-138.	2.2	83
92	The neural representation of odor is modulated by the presence of a trigeminal stimulus during odor encoding. Clinical Neurophysiology, 2007, 118, 696-701.	1.5	31
93	Psychological and physiological evaluation of emotional effects of a perfume in menopausal women. International Journal of Cosmetic Science, 2007, 29, 399-408.	2.6	8
94	Contextual cues during olfactory learning improve memory forÂsmells inÂchildren. Revue Europeenne De Psychologie Appliquee, 2006, 56, 253-259.	0.8	12
95	Attentional modulation in human primary olfactory cortex. Nature Neuroscience, 2005, 8, 114-120.	14.8	241
96	Odorant-specific Patterns of Sniffing during Imagery Distinguish  Bad' and  Good' Olfactory Imagers. Chemical Senses, 2005, 30, 521-529.	2.0	56
97	Involvement of right piriform cortex in olfactory familiarity judgments. NeuroImage, 2005, 24, 1032-1041.	4.2	56
98	Sniffing a human sex-steroid derived compound affects mood and autonomic arousal in a dose-dependent manner. Psychoneuroendocrinology, 2004, 29, 1290-1299.	2.7	65
99	Sniffing a human sex-steroid derived compound affects mood and autonomic arousal in a dose-dependent manner. Psychoneuroendocrinology, 2004, , .	2.7	3
100	Olfactomotor activity during imagery mimics that during perception. Nature Neuroscience, 2003, 6, 1142-1144.	14.8	156
101	Odor and color of cosmetic products: correlations between subjective judgement and autonomous nervous system response. International Journal of Cosmetic Science, 2003, 25, 273-283.	2.6	23
102	Sex-Steroid Derived Compounds Induce Sex-Specific Effects on Autonomic Nervous System Function in Humans Behavioral Neuroscience, 2003, 117, 1125-1134.	1.2	77
103	Sniffing human sex-steroid derived compounds modulates mood, memory and autonomic nervous system function in specific behavioral contexts. Behavioural Brain Research, 2003, 152, 11-22.	2.2	79
104	Perceptual, affective, and cognitive judgments of odors: Pleasantness and handedness effects. Brain and Cognition, 2003, 51, 270-275.	1.8	50
105	Autonomic Nervous System Responses to Odours: the Role of Pleasantness and Arousal. Chemical Senses, 2002, 27, 703-709.	2.0	240
106	Modulation of visual event-related potentials by emotional olfactory stimuli. Neurophysiologie Clinique, 2002, 32, 335-342.	2.2	33
107	Psychophysiological correlates of affects in human olfaction. Neurophysiologie Clinique, 2002, 32, 326-332.	2.2	69
108	Influence of affective and cognitive judgments on autonomic parameters during inhalation of pleasant and unpleasant odors in humans. Neuroscience Letters, 2002, 319, 162-166.	2.1	99

#	Article	IF	CITATIONS
109	Asymmetry of pleasant vs. unpleasant odor processing during affective judgment in humans. Neuroscience Letters, 2002, 328, 309-313.	2.1	72
110	Is There a Hedonic Dimension to Odors?. , 2002, , 140-159.		22
111	One nostril knows what the other learns. Nature, 2002, 419, 802-802.	27.8	84