
Andrew J Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/382781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SENSE AND THE SINGLE NEURON: Probing the Physiology of Perception. Annual Review of Neuroscience, 1998, 21, 227-277.	5.0	744
2	Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature, 1997, 389, 280-283.	13.7	389
3	Binocular depth perception and the cerebral cortex. Nature Reviews Neuroscience, 2007, 8, 379-391.	4.9	338
4	Perceptually Bistable Three-Dimensional Figures Evoke High Choice Probabilities in Cortical Area MT. Journal of Neuroscience, 2001, 21, 4809-4821.	1.7	274
5	Human Cortical Activity Correlates With Stereoscopic Depth Perception. Journal of Neurophysiology, 2001, 86, 2054-2068.	0.9	269
6	Binocular Neurons in V1 of Awake Monkeys Are Selective for Absolute, Not Relative, Disparity. Journal of Neuroscience, 1999, 19, 5602-5618.	1.7	241
7	Quantitative Analysis of the Responses of V1 Neurons to Horizontal Disparity in Dynamic Random-Dot Stereograms. Journal of Neurophysiology, 2002, 87, 191-208.	0.9	207
8	A specialization for relative disparity in V2. Nature Neuroscience, 2002, 5, 472-478.	7.1	205
9	Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey. Journal of Neuroscience, 1988, 8, 3541-3548.	1.7	204
10	Range and Mechanism of Encoding of Horizontal Disparity in Macaque V1. Journal of Neurophysiology, 2002, 87, 209-221.	0.9	176
11	Spatial properties of neurons in the monkey striate cortex. Proceedings of the Royal Society of London Series B, Containing Papers of A Biological Character, 1987, 231, 251-288.	1.8	174
12	Binocular mechanisms for detecting motion-in-depth. Vision Research, 1994, 34, 483-495.	0.7	144
13	Integration of depth modules: Stereopsis and texture. Vision Research, 1993, 33, 813-826.	0.7	133
14	Probing the human stereoscopic system with reverse correlation. Nature, 1999, 401, 695-698.	13.7	130
15	Local Disparity Not Perceived Depth Is Signaled by Binocular Neurons in Cortical Area V1 of the Macaque. Journal of Neuroscience, 2000, 20, 4758-4767.	1.7	124
16	Contrast sensitivity and orientation selectivity in lamina IV of the striate cortex of Old World monkeys. Experimental Brain Research, 1984, 54, 367-72.	0.7	121
17	Capabilities of monkey cortical cells in spatial-resolution tasks. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1985, 2, 1101.	0.8	117
18	Combined fMRI-MRS acquires simultaneous glutamate and BOLD-fMRI signals in the human brain. NeuroImage, 2017, 155, 113-119.	2.1	106

Andrew J Parker

#	Article	IF	CITATIONS
19	Vertical disparities and perception of three-dimensional shape. Nature, 1991, 349, 411-413.	13.7	105
20	Comparing Perceptual Signals of Single V5/MT Neurons in Two Binocular Depth Tasks. Journal of Neurophysiology, 2004, 92, 1586-1596.	0.9	96
21	The Precision of Single Neuron Responses in Cortical Area V1 during Stereoscopic Depth Judgments. Journal of Neuroscience, 2000, 20, 3387-3400.	1.7	95
22	A simple model accounts for the response of disparity-tuned V1 neurons to anticorrelated images. Visual Neuroscience, 2002, 19, 735-753.	0.5	90
23	Local circuit neurons of macaque monkey striate cortex: II. Neurons of laminae 5B and 6. Journal of Comparative Neurology, 1988, 276, 1-29.	0.9	86
24	Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. Journal of Vision, 2005, 5, 1.	0.1	86
25	Receptive Field Size in V1 Neurons Limits Acuity for Perceiving Disparity Modulation. Journal of Neuroscience, 2004, 24, 2065-2076.	1.7	85
26	Effects of different texture cues on curved surfaces viewed stereoscopically. Vision Research, 1993, 33, 827-838.	0.7	83
27	Humans Ignore Motion and Stereo Cues in Favor of a Fictional Stable World. Current Biology, 2006, 16, 428-432.	1.8	83
28	Two-dimensional spatial structure of receptive fields in monkey striate cortex. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1988, 5, 598.	0.8	80
29	Disparity Detection in Anticorrelated Stereograms. Perception, 1998, 27, 1367-1377.	0.5	77
30	Disparity Channels in Early Vision. Journal of Neuroscience, 2007, 27, 11820-11831.	1.7	76
31	Human contrast discrimination and the threshold of cortical neurons. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1987, 4, 2366.	0.8	72
32	Human Cortical Activity Evoked by the Assignment of Authenticity when Viewing Works of Art. Frontiers in Human Neuroscience, 2011, 5, 134.	1.0	64
33	Neuronal activity and its links with the perception of multi–stable figures. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1053-1062.	1.8	63
34	Structural and Functional Changes across the Visual Cortex of a Patient with Visual Form Agnosia. Journal of Neuroscience, 2013, 33, 12779-12791.	1.7	62
35	Spatial properties of disparity pooling in human stereo vision. Vision Research, 1989, 29, 1525-1538.	0.7	60
36	Refinement of the use of food and fluid control as motivational tools for macaques used in behavioural neuroscience research: Report of a Working Group of the NC3Rs. Journal of Neuroscience Methods, 2010, 193, 167-188.	1.3	60

#	Article	IF	CITATIONS
37	Neural Modulation by Binocular Disparity Greatest in Human Dorsal Visual Stream. Journal of Neurophysiology, 2010, 104, 169-178.	0.9	58
38	Neurons in Dorsal Visual Area V5/MT Signal Relative Disparity. Journal of Neuroscience, 2011, 31, 17892-17904.	1.7	53
39	Topographical representation of binocular depth in the human visual cortex using fMRI. Journal of Vision, 2007, 7, 15.	0.1	50
40	Neuronal Computation of Disparity in V1 Limits Temporal Resolution for Detecting Disparity Modulation. Journal of Neuroscience, 2005, 25, 10207-10219.	1.7	44
41	Efficiency of stereopsis in random-dot stereograms. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1992, 9, 14.	0.8	40
42	Chapter 14 Cortical mechanisms of binocular stereoscopic vision. Progress in Brain Research, 2001, 134, 205-216.	0.9	40
43	Independent neural mechanisms for bright and dark information in binocular stereopsis. Nature, 1995, 374, 808-811.	13.7	39
44	A Causal Role for V5/MT Neurons Coding Motion-Disparity Conjunctions in Resolving Perceptual Ambiguity. Current Biology, 2013, 23, 1454-1459.	1.8	39
45	Reward modulates the effect of visual cortical microstimulation on perceptual decisions. ELife, 2015, 4, e07832.	2.8	38
46	Comparison of Neurochemical and BOLD Signal Contrast Response Functions in the Human Visual Cortex. Journal of Neuroscience, 2019, 39, 7968-7975.	1.7	37
47	Individual Differences in the Alignment of Structural and Functional Markers of the V5/MT Complex in Primates. Cerebral Cortex, 2016, 26, 3928-3944.	1.6	35
48	Stereoscopic Vision in the Absence of the Lateral Occipital Cortex. PLoS ONE, 2010, 5, e12608.	1.1	35
49	Shifts in perceived periodicity induced by temporal modulation and their influence on the spatial frequency tuning of two aftereffects. Vision Research, 1981, 21, 1739-1747.	0.7	34
50	Neuronal mechanisms for the perception of ambiguous stimuli. Current Opinion in Neurobiology, 2003, 13, 433-439.	2.0	32
51	Neural architectures for stereo vision. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150261.	1.8	32
52	The Effects of Temporal Modulation on the Perceived Spatial Structure of Sine-Wave Gratings. Perception, 1983, 12, 663-682.	0.5	29
53	Stereoacuity thresholds in the presence of a reference surface. Vision Research, 2001, 41, 3051-3061.	0.7	28
54	An orientation-tuned component in the contrast masking of stereopsis. Vision Research, 1993, 33, 1535-1544.	0.7	27

#	Article	IF	CITATIONS
55	Perceptual switch rates with ambiguous structure-from-motion figures in bipolar disorder. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1839-1848.	1.2	24
56	Constraints on human stereo dot matching. Vision Research, 1994, 34, 2761-2772.	0.7	21
57	Preserved extrastriate visual network in a monkey with substantial, naturally occurring damage to primary visual cortex. ELife, 2019, 8, .	2.8	19
58	Normative cerebral cortical thickness for human visual areas. NeuroImage, 2019, 201, 116057.	2.1	18
59	Responses to interocular disparity correlation in the human cerebral cortex. Ophthalmic and Physiological Optics, 2014, 34, 186-198.	1.0	17
60	Computing stereo channels from masking data. Vision Research, 1997, 37, 2143-2152.	0.7	15
61	Implicit motion perception in schizotypy and schizophrenia: A Representational Momentum study. Cognitive Neuropsychiatry, 2002, 7, 1-14.	0.7	13
62	A micro-pool model for decision-related signals in visual cortical areas. Frontiers in Computational Neuroscience, 2013, 7, 115.	1.2	12
63	Vision in our three-dimensional world. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150251.	1.8	12
64	Interneuronal correlations at longer time scales predict decision signals for bistable structure-from-motion perception. Scientific Reports, 2019, 9, 11449.	1.6	12
65	GABAergic inhibition in the human visual cortex relates to eye dominance. Scientific Reports, 2021, 11, 17022.	1.6	12
66	Objective evaluation of human and computational stereoscopic visual systems. Vision Research, 1994, 34, 2773-2785.	0.7	11
67	Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches. Frontiers in Neuroscience, 2014, 8, 127.	1.4	10
68	Defining the V5/MT neuronal pool for perceptual decisions in a visual stereo-motion task. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150260.	1.8	8
69	Modeling V1 neuronal responses to orientation disparity. Visual Neuroscience, 2001, 18, 879-91.	0.5	7
70	Binocular correspondence in stereoscopic vision. Eye, 1996, 10, 177-181.	1.1	4
71	Intermediate level cortical areas and the multiple roles of area V4. Current Opinion in Physiology, 2020, 16, 61-67.	0.9	4
72	Human primary visual cortex shows larger population receptive fields for binocular disparity-defined stimuli. Brain Structure and Function, 2021, 226, 2819-2838.	1.2	4

#	Article	IF	CITATIONS
73	Perception of size in a 'dynamic Ames room'. Journal of Vision, 2010, 3, 490-490.	0.1	4
74	Neuroplastin genetically interacts with Cadherin 23 and the encoded isoform Np55 is sufficient for cochlear hair cell function and hearing. PLoS Genetics, 2022, 18, e1009937.	1.5	4
75	A causal chain in motion. Nature, 1990, 346, 106-106.	13.7	3
76	The ethical cost of doing nothing. National Science Review, 2020, 7, 1260-1262.	4.6	3
77	Hyperacuity and the visual cortex. Nature, 1987, 326, 105-106.	13.7	2
78	Misaligned viewpoints. Nature, 1991, 352, 109-109.	13.7	2
79	Solid shape and the natural world. Current Biology, 1993, 3, 401-403.	1.8	2
80	Response to Westlund's commentary: â€ [~] Can conditioned reinforcers and variable-Ratio Schedules make food- and fluid control redundant?'. Journal of Neuroscience Methods, 2012, 204, 206-209.	1.3	2
81	Revealing Rembrandt. Frontiers in Neuroscience, 2014, 8, 76.	1.4	2
82	The neural events that change perception. E-Neuroforum, 2017, 24, A31-A39.	0.2	2
83	Correlated structure of neuronal firing in macaque visual cortex limits information for binocular depth discrimination. Journal of Neurophysiology, 2021, 126, 275-303.	0.9	2
84	High choice probabilities are associated with high interneuronal correlations in MT(V5) of the awake behaving macaque. Journal of Vision, 2010, 1, 399-399.	0.1	2
85	Fakes and Forgeries in the Brain Scanner. Frontiers for Young Minds, 0, 6, .	0.8	2
86	Effects of Spatial and Feature Attention on Disparity-Rendered Structure-From-Motion Stimuli in the Human Visual Cortex. PLoS ONE, 2014, 9, e100074.	1.1	1
87	Intra-Areal Visual Topography in Primate Brains Mapped with Probabilistic Tractography of Diffusion-Weighted Imaging. Cerebral Cortex, 2022, 32, 2555-2574.	1.6	1
88	Similar temporal specificity of perceptual choice signals across a large pool of V5/MT neurons. Journal of Vision, 2010, 3, 405-405.	0.1	1
89	Changes in variance of neuronal signals may be perceptually relevant for stereo vision. , 2016, , .		1
90	Efficiency of stereopsis in random-dot stereograms: erratum. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1992, 9, 1135.	0.8	0

#	Article	IF	CITATIONS
91	Human cortical responses to variations of the interocular correlation of binocular signals. , 2012, , .		0
92	Vision. Vision (Switzerland), 2017, 1, 1.	0.5	0
93	Stereoscopic Vision â ⁻ †. , 2017, , .		0
94	Die neuronalen Signale, die Wahrnehmung verÄ ¤ dern. E-Neuroforum, 2018, 24, 39-48.	0.2	0
95	Relating Eye Dominance to Neurochemistry in the Human Visual Cortex Using Ultra High Field 7-Tesla MR Spectroscopy. , 2019, , .		0
96	Recognition for Vision. Vision (Switzerland), 2019, 3, 69.	0.5	0
97	The range of disparities encoded in primate V1. Journal of Vision, 2010, 1, 271-271.	0.1	0
98	A comparison of structurally and functionally defined human primary visual cortex. Journal of Vision, 2010, 3, 374-374.	0.1	0
99	Modelling the relative disparity selectivity of V2 neurons. Journal of Vision, 2010, 1, 167-167.	0.1	0
100	Simple cells can show non-linear binocular combination. Journal of Vision, 2010, 2, 286-286.	0.1	0
101	Systematic distortions of perceptual stability investigated using virtual reality. Journal of Vision, 2010, 3, 497-497.	0.1	0
102	Spatial scale of correlated signals in 7T BOLD imaging. , 2016, , .		0
103	MRI stereoscope: a miniature stereoscope for human neuroimaging. ENeuro, 2022, , ENEURO.0382-21.2021.	0.9	0
104	From maverick to mainstream. Perception, 2009, 38, 799; discussion 804-7.	0.5	0