Sufen Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3827804/publications.pdf Version: 2024-02-01

SHEEN DONG

#	Article	IF	CITATIONS
1	A review of the current progress and application of 3D printed concrete. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105533.	7.6	260
2	Nano-core effect in nano-engineered cementitious composites. Composites Part A: Applied Science and Manufacturing, 2017, 95, 100-109.	7.6	256
3	Smart concretes and structures: A review. Journal of Intelligent Material Systems and Structures, 2015, 26, 1303-1345.	2.5	184
4	Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2017, 103, 131-147.	7.6	120
5	Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete. Cement and Concrete Composites, 2016, 72, 48-65.	10.7	118
6	Multi-layer graphene-engineered cementitious composites with multifunctionality/intelligence. Composites Part B: Engineering, 2017, 129, 221-232.	12.0	105
7	Enhancing mechanisms of multi-layer graphenes to cementitious composites. Composites Part A: Applied Science and Manufacturing, 2017, 101, 143-150.	7.6	95
8	Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials. Composites Part A: Applied Science and Manufacturing, 2018, 109, 303-320.	7.6	93
9	Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Construction and Building Materials, 2020, 240, 117942.	7.2	92
10	Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete. Materials Research Express, 2017, 4, 095008.	1.6	76
11	Microstructure related mechanical behaviors of short-cut super-fine stainless wire reinforced reactive powder concrete. Materials and Design, 2016, 96, 16-26.	7.0	66
12	Development of sensing concrete: Principles, properties and its applications. Journal of Applied Physics, 2019, 126, .	2.5	58
13	Mechanical behaviors of nano-zirconia reinforced reactive powder concrete under compression and flexure. Construction and Building Materials, 2018, 162, 663-673.	7.2	53
14	Nano/micro-structures and mechanical properties of ultra-high performance concrete incorporating graphene with different lateral sizes. Composites Part A: Applied Science and Manufacturing, 2020, 137, 106011.	7.6	51
15	Dynamic impact behaviors and constitutive model of super-fine stainless wire reinforced reactive powder concrete. Construction and Building Materials, 2018, 184, 602-616.	7.2	46
16	Constitutive model and reinforcing mechanisms of uniaxial compressive property for reactive powder concrete with super-fine stainless wire. Composites Part B: Engineering, 2019, 166, 298-309.	12.0	45
17	Interfacial characteristics of nano-engineered concrete composites. Construction and Building Materials, 2020, 259, 119803.	7.2	45
18	Investigating pore structure of nano-engineered concrete with low-field nuclear magnetic resonance. Journal of Materials Science, 2021, 56, 243-259.	3.7	43

SUFEN DONG

#	Article	IF	CITATIONS
19	Pore structure characteristics of concrete composites with surface-modified carbon nanotubes. Cement and Concrete Composites, 2022, 128, 104453.	10.7	42
20	Antimicrobial concrete for smart and durable infrastructures: A review. Construction and Building Materials, 2020, 260, 120456.	7.2	41
21	Nanomechanical Characteristics of Interfacial Transition Zone in Nano-Engineered Concrete. Engineering, 2022, 17, 99-109.	6.7	35
22	Flexural toughness and calculation model of super-fine stainless wire reinforced reactive powder concrete. Cement and Concrete Composites, 2019, 104, 103367.	10.7	34
23	Self-assembled 0D/2D nano carbon materials engineered smart and multifunctional cement-based composites. Construction and Building Materials, 2021, 272, 121632.	7.2	33
24	Fracture and self-sensing characteristics of super-fine stainless wire reinforced reactive powder concrete. Cement and Concrete Composites, 2020, 105, 103427.	10.7	32
25	Mechanical properties of graphene-reinforced reactive powder concrete at different strain rates. Journal of Materials Science, 2020, 55, 3369-3387.	3.7	32
26	Self-sensing ultra-high performance concrete for in-situ monitoring. Sensors and Actuators A: Physical, 2021, 331, 113049.	4.1	31
27	Uniaxial compressive fatigue behavior of ultra-high performance concrete reinforced with super-fine stainless wires. International Journal of Fatigue, 2021, 142, 105959.	5.7	30
28	Nickel plated carbon nanotubes reinforcing concrete composites: from nano/micro structures to macro mechanical properties. Composites Part A: Applied Science and Manufacturing, 2021, 141, 106228.	7.6	29
29	Tailoring Anti-Impact Properties of Ultra-High Performance Concrete by Incorporating Functionalized Carbon Nanotubes. Engineering, 2022, 18, 232-245.	6.7	20
30	Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers. Materials Research Express, 2017, 4, 125704.	1.6	18
31	Enhanced Impact Properties of Concrete Modified with Nanofiller Inclusions. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	17
32	The reinforcing effects and mechanisms of multi-layer graphenes on mechanical properties of reactive powder concrete. Construction and Building Materials, 2020, 251, 118995.	7.2	16
33	Energy-harvesting concrete for smart and sustainable infrastructures. Journal of Materials Science, 2021, 56, 16243-16277.	3.7	15
34	Electromagnetic Wave-Absorbing Property and Mechanism of Cementitious Composites with Different Types of Nano Titanium Dioxide. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	14
35	Understanding the effect of nano/micro-structures on anti-impact of nano-boron nitride filled cementitious composites. Construction and Building Materials, 2021, 298, 123885.	7.2	14
36	Bond of nanoinclusions reinforced concrete with old concrete: Strength, reinforcing mechanisms and prediction model. Construction and Building Materials, 2021, 283, 122741.	7.2	12

SUFEN DONG

#	Article	IF	CITATIONS
37	Super-fine stainless wires enabled multifunctional and smart reactive powder concrete. Smart Materials and Structures, 2019, 28, 125009.	3.5	12
38	Enhancement and underlying mechanisms of stainless steel wires to fatigue properties of concrete under flexure. Cement and Concrete Composites, 2022, 126, 104372.	10.7	11
39	Incorporating super-fine stainless wires to control thermal cracking of concrete structures caused by heat of hydration. Construction and Building Materials, 2021, 271, 121896.	7.2	10
40	Electromagnetic wave shielding/absorption performances of cementitious composites incorporating carbon nanotube metamaterial with helical chirality. Journal of Composite Materials, 2020, 54, 3857-3870.	2.4	9
41	Bond behaviors between nano-engineered concrete and steel bars. Construction and Building Materials, 2021, 299, 124261.	7.2	9
42	Modifying self-sensing cement-based composites through multiscale composition. Measurement Science and Technology, 2021, 32, 074002.	2.6	8
43	Improving the mechanical characteristics of well cement using botryoid hybrid nano-carbon materials with proper dispersion. Construction and Building Materials, 2021, 270, 121464.	7.2	6
44	Biomass-derived nanocellulose-modified cementitious composites: a review. Materials Today Sustainability, 2022, 18, 100115.	4.1	6
45	Design and Implementation of a Multiple Traffic Parameter Detection Sensor Developed With Quantum Tunneling Composites. IEEE Sensors Journal, 2015, 15, 4845-4852.	4.7	5
46	Dynamic mechanical properties of cementitious composites with carbon nanotubes. Materials Today Communications, 2020, 22, 100722.	1.9	5
47	Nano carbon material–filled cementitious composites. , 2016, , 153-181.		4
48	Investigating the compatibility of nickel coated carbon nanotubes and cementitious composites through experimental evidence and theoretical calculations. Construction and Building Materials, 2021, 300, 124340.	7.2	3
49	On the incorporation of nano TiO2 to inhibit concrete deterioration in the marine environment. Nanotechnology, 2022, 33, 135704.	2.6	2
50	Developing Multifunctional/Smart Civil Engineering Materials to Fight Viruses. ACS Sustainable Chemistry and Engineering, 2022, 10, 678-690.	6.7	2
51	Multifunctional Super-Fine Stainless Wires Reinforced UHPC for Smart Prefabricated Structures. Lecture Notes in Civil Engineering, 2023, , 794-804.	0.4	2
52	Quantum Tunneling Composites and Detectors for Intelligent Transportation Systems. , 2015, , .		1
53	Bending Toughness and Calculation Model of Ultrahigh-Performance Concrete with Hybrid Micro- and Nanofillers. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	1