## Mamoru Okamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3827104/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 2003, 302, 100-103.                                                                                                                                                                      | 6.0 | 812       |
| 2  | Microarray Analysis of the Nitrate Response in Arabidopsis Roots and Shoots Reveals over 1,000<br>Rapidly Responding Genes and New Linkages to Glucose, Trehalose-6-Phosphate, Iron, and Sulfate<br>Metabolism Â. Plant Physiology, 2003, 132, 556-567.                                | 2.3 | 611       |
| 3  | The regulation of nitrate and ammonium transport systems in plants. Journal of Experimental Botany, 2002, 53, 855-864.                                                                                                                                                                 | 2.4 | 391       |
| 4  | Regulation of NRT1 and NRT2 Gene Families of Arabidopsis thaliana: Responses to Nitrate Provision.<br>Plant and Cell Physiology, 2003, 44, 304-317.                                                                                                                                    | 1.5 | 333       |
| 5  | Dissection of the AtNRT2.1:AtNRT2.2 Inducible High-Affinity Nitrate Transporter Gene Cluster. Plant<br>Physiology, 2007, 143, 425-433.                                                                                                                                                 | 2.3 | 330       |
| 6  | Regulation of a putative highâ€ <b>a</b> ffinity nitrate transporter ( Nrt2;1At ) in roots of Arabidopsis thaliana.<br>Plant Journal, 1999, 17, 563-568.                                                                                                                               | 2.8 | 261       |
| 7  | Response to Zemojtel et al: Plant nitric oxide synthase: back to square one. Trends in Plant Science, 2006, 11, 526-527.                                                                                                                                                               | 4.3 | 246       |
| 8  | High-Affinity Nitrate Transport in Roots of Arabidopsis Depends on Expression of the NAR2-Like Gene<br>AtNRT3.1. Plant Physiology, 2006, 140, 1036-1046.                                                                                                                               | 2.3 | 239       |
| 9  | The Genetics of Nitrogen Use Efficiency in Crop Plants. Annual Review of Genetics, 2015, 49, 269-289.                                                                                                                                                                                  | 3.2 | 217       |
| 10 | Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4 + transporters in roots of Oryza sativa subspecies indica. Plant, Cell and Environment, 2003, 26, 907-914.                                                                        | 2.8 | 105       |
| 11 | Rice DUR3 mediates highâ€affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in <i>Arabidopsis</i> . New Phytologist, 2012, 193, 432-444.                                                                            | 3.5 | 104       |
| 12 | Soybean <i>SAT1</i> ( <i>Symbiotic Ammonium Transporter 1</i> ) encodes a bHLH transcription factor<br>involved in nodule growth and NH <sub>4</sub> <sup>+</sup> transport. Proceedings of the<br>National Academy of Sciences of the United States of America, 2014, 111, 4814-4819. | 3.3 | 92        |
| 13 | CABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nature Communications, 2021, 12, 1952.                                                                                                                                        | 5.8 | 92        |
| 14 | Genetic approaches to enhancing nitrogen-use efficiency (NUE) in cereals: challenges and future directions. Functional Plant Biology, 2015, 42, 921.                                                                                                                                   | 1.1 | 75        |
| 15 | Aluminum-Activated Malate Transporters Can Facilitate GABA Transport. Plant Cell, 2018, 30, 1147-1164.                                                                                                                                                                                 | 3.1 | 71        |
| 16 | Detecting spikes of wheat plants using neural networks with Laws texture energy. Plant Methods, 2017, 13, 83.                                                                                                                                                                          | 1.9 | 61        |
| 17 | Nitrate uptake and its regulation in relation to improving nitrogen use efficiency in cereals. Seminars in Cell and Developmental Biology, 2018, 74, 97-104.                                                                                                                           | 2.3 | 43        |
| 18 | Interference with the citrullineâ€based nitric oxide synthase assay by argininosuccinate lyase activity in<br><i>Arabidopsis</i> extracts. FEBS Journal, 2007, 274, 4238-4245.                                                                                                         | 2.2 | 42        |

Mamoru Okamoto

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Opposite fates of the purine metabolite allantoin under water and nitrogen limitations in bread wheat. Plant Molecular Biology, 2019, 99, 477-497.                                                                              | 2.0 | 41        |
| 20 | Evaluation of Australian wheat genotypes for response to variable nitrogen application. Plant and Soil, 2016, 399, 247-255.                                                                                                     | 1.8 | 31        |
| 21 | RNA Catabolites Contribute to the Nitrogen Pool and Support Growth Recovery of Wheat. Frontiers in Plant Science, 2018, 9, 1539.                                                                                                | 1.7 | 29        |
| 22 | Improving Nitrogen Use Efficiency Through Overexpression of Alanine Aminotransferase in Rice,<br>Wheat, and Barley. Frontiers in Plant Science, 2021, 12, 628521.                                                               | 1.7 | 27        |
| 23 | Quantifying the Onset and Progression of Plant Senescence by Color Image Analysis for High<br>Throughput Applications. PLoS ONE, 2016, 11, e0157102.                                                                            | 1.1 | 26        |
| 24 | Antimicrobial DNA-binding Photosensitizers from the Common Rush, Juncus effusus¶. Photochemistry<br>and Photobiology, 2002, 76, 51-56.                                                                                          | 1.3 | 25        |
| 25 | The Genetic Control of Grain Protein Content under Variable Nitrogen Supply in an Australian Wheat<br>Mapping Population. PLoS ONE, 2016, 11, e0159371.                                                                         | 1.1 | 25        |
| 26 | Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application. PLoS<br>ONE, 2016, 11, e0159374.                                                                                                  | 1.1 | 25        |
| 27 | Strategies for engineering improved nitrogen use efficiency in crop plants via redistribution and recycling of organic nitrogen. Current Opinion in Biotechnology, 2022, 73, 263-269.                                           | 3.3 | 19        |
| 28 | Molecular genetics to discover and improve nitrogen use efficiency in crop plants. , 2017, , 93-122.                                                                                                                            |     | 11        |
| 29 | Understanding the Interactions between Biomass, Grain Production and Grain Protein Content in High and Low Protein Wheat Genotypes under Controlled Environments. Agronomy, 2019, 9, 706.                                       | 1.3 | 10        |
| 30 | Strengths and Weaknesses of National Variety Trial Data for Multi-Environment Analysis: A Case Study<br>on Grain Yield and Protein Content. Agronomy, 2020, 10, 753.                                                            | 1.3 | 10        |
| 31 | Antimicrobial DNA-binding photosensitizers from the common rush, Juncus effusus. Photochemistry and Photobiology, 2002, 76, 51-6.                                                                                               | 1.3 | 10        |
| 32 | Determination of the Essentiality of the Eight Cysteine Residues of the NrtA Protein for High-Affinity<br>Nitrate Transport and the Generation of a Functional Cysteine-less Transporter. Biochemistry, 2005,<br>44, 5471-5477. | 1.2 | 7         |
| 33 | Exploring the potential for top-dressing bread wheat with ammonium chloride to minimize grain yield<br>losses under drought. Soil Science and Plant Nutrition, 2018, 64, 642-652.                                               | 0.8 | 5         |
| 34 | Inhibition of Restriction Enzyme's DNA Sequence Recognition by PUVA Treatmentâ€Â¶. Photochemistry<br>and Photobiology, 2001, 74, 269.                                                                                           | 1.3 | 1         |
| 35 | Inhibition of restriction enzyme's DNA sequence recognition by PUVA treatment. Nucleic Acids Symposium Series, 2003, 3, 297-298.                                                                                                | 0.3 | 0         |
| 36 | Inhibition of Restriction Enzyme's DNA Sequence Recognition by PUVA Treatmentâ€Â¶. Photochemistry and Photobiology, 2007, 74, 269-273.                                                                                          | 1.3 | 0         |