List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3827000/publications.pdf Version: 2024-02-01

LUÃE CODINHO

#	Article	IF	CITATIONS
1	2.5D MFS–FEM model for the prediction of vibrations due to underground railway traffic. Engineering Structures, 2015, 104, 141-154.	5.3	71
2	Analytical evaluation of the acoustic insulation provided by double infinite walls. Journal of Sound and Vibration, 2003, 263, 113-129.	3.9	50
3	Acoustic performance of timber and timber-concrete floors. Construction and Building Materials, 2015, 101, 684-691.	7.2	46
4	On the use of lightweight mortars for the minimization of impact sound transmission. Construction and Building Materials, 2013, 45, 184-191.	7.2	42
5	3D FEM analysis of the effect of buried phononic crystal barriers on vibration mitigation. Engineering Structures, 2019, 196, 109340.	5.3	38
6	Green's function for two-and-a-half dimensional elastodynamic problems in a half-space. Computational Mechanics, 2001, 27, 484-491.	4.0	35
7	Numerical Simulation of Ground Rotations along 2D Topographical Profiles under the Incidence of Elastic Plane Waves. Bulletin of the Seismological Society of America, 2009, 99, 1147-1161.	2.3	34
8	A three-dimensional acoustics model using the method of fundamental solutions. Engineering Analysis With Boundary Elements, 2008, 32, 525-531.	3.7	33
9	Prediction of airborne sound and impact sound insulation provided by single and multilayer systems using analytical expressions. Applied Acoustics, 2007, 68, 17-42.	3.3	31
10	A finite element model of perforated panel absorbers including viscothermal effects. Applied Acoustics, 2015, 90, 1-8.	3.3	29
11	Perforated panel absorbers with micro-perforated partitions. Applied Acoustics, 2019, 149, 108-113.	3.3	29
12	3D sound scattering by rigid barriers in the vicinity of tall buildings. Applied Acoustics, 2001, 62, 1229-1248.	3.3	27
13	On the application of continuous buried periodic inclusions on the filtering of traffic vibrations: A numerical study. Soil Dynamics and Earthquake Engineering, 2018, 113, 391-405.	3.8	25
14	An optimized BEM–FEM iterative coupling algorithm for acoustic–elastodynamic interaction analyses in the frequency domain. Computers and Structures, 2012, 106-107, 68-80.	4.4	24
15	A model for acoustic absorbent materials derived from coconut fiber. Materiales De Construccion, 2014, 64, e008.	0.7	24
16	Defining an accurate MFS solution for 2.5D acoustic and elastic wave propagation. Engineering Analysis With Boundary Elements, 2009, 33, 1383-1395.	3.7	23
17	Acoustic screening effect on building façades due to parking lines in urban environments. Effects in noise mapping. Applied Acoustics, 2018, 130, 1-14.	3.3	22
18	Characterization and physical properties of aluminium foam–polydimethylsiloxane nanocomposite hybrid structures. Composite Structures, 2019, 230, 111521.	5.8	22

#	Article	IF	CITATIONS
19	Hybrid Structures Made of Polyurethane/Graphene Nanocomposite Foams Embedded within Aluminum Open-Cell Foam. Metals, 2020, 10, 768.	2.3	22
20	Modal Frequencies of a Reinforced Timber-Concrete Composite Floor: Testing and Modeling. Journal of Structural Engineering, 2015, 141, .	3.4	20
21	Sound pressure level attenuation provided by thin rigid screens coupled to tall buildings. Journal of Sound and Vibration, 2007, 304, 479-496.	3.9	19
22	Three-dimensional wave scattering by a fixed cylindrical inclusion submerged in a fluid medium. Engineering Analysis With Boundary Elements, 1999, 23, 745-755.	3.7	18
23	Wave propagation in cracked elastic slabs and half-space domains—TBEM and MFS approaches. Engineering Analysis With Boundary Elements, 2007, 31, 819-835.	3.7	17
24	Assessment of a simplified experimental procedure to evaluate impact sound reduction of floor coverings. Applied Acoustics, 2014, 79, 92-103.	3.3	17
25	An experimental/numerical hybrid methodology for the prediction of railway-induced ground-borne vibration on buildings to be constructed close to existing railway infrastructures: Numerical validation and parametric study. Soil Dynamics and Earthquake Engineering, 2021, 150, 106888.	3.8	17
26	Performance of the BEM solution in 3D acoustic wave scattering. Advances in Engineering Software, 2001, 32, 629-639.	3.8	16
27	Sound propagation around rigid barriers laterally confined by tall buildings. Applied Acoustics, 2002, 63, 595-609.	3.3	16
28	Study of transient heat conduction in 2.5D domains using the boundary element method. Engineering Analysis With Boundary Elements, 2004, 28, 593-606.	3.7	16
29	3D acoustic scattering from an irregular fluid waveguide via the BEM. Engineering Analysis With Boundary Elements, 2001, 25, 443-453.	3.7	15
30	Frequency domain analysis of acoustic wave propagation in heterogeneous media considering iterative coupling procedures between the method of fundamental solutions and Kansa's method. International Journal for Numerical Methods in Engineering, 2012, 89, 914-938.	2.8	15
31	A coupled MFS–FEM model for 2-D dynamic soil–structure interaction in the frequency domain. Computers and Structures, 2013, 129, 74-85.	4.4	15
32	Proposal of numerical models to predict the diffuse field sound absorption of finite sized porous materials $\hat{a} \in BEM$ and FEM approaches. Applied Acoustics, 2021, 180, 108092.	3.3	15
33	Efficient numerical models for the prediction of acoustic wave propagation in the vicinity of a wedge coastal region. Engineering Analysis With Boundary Elements, 2011, 35, 855-867.	3.7	14
34	Numerical Evaluation of Sound Attenuation Provided by Periodic Structures. Archives of Acoustics, 2013, 38, 503-516.	0.8	14
35	An Overview of Recent Advances in the Iterative Analysis of Coupled Models for Wave Propagation. Journal of Applied Mathematics, 2014, 2014, 1-21.	0.9	14
36	Efficient analysis of sound propagation in sonic crystals using an ACA–MFS approach. Engineering Analysis With Boundary Elements, 2016, 69, 72-85.	3.7	14

#	Article	IF	CITATIONS
37	Assessment of methods to study the acoustic properties of heterogeneous perforated panel absorbers. Applied Acoustics, 2018, 133, 1-7.	3.3	14
38	The method of fundamental solutions for the analysis of infinite 3D sonic crystals. Engineering Analysis With Boundary Elements, 2019, 98, 172-183.	3.7	14
39	Life cycle analysis of cross-insulated timber panels. Structures, 2021, 31, 1311-1324.	3.6	14
40	Wave motion between two fluid-filled boreholes in an elastic medium. Engineering Analysis With Boundary Elements, 2002, 26, 101-117.	3.7	13
41	Scattering of acoustic waves by movable lightweight elastic screens. Engineering Analysis With Boundary Elements, 2003, 27, 215-226.	3.7	13
42	Acoustic analysis of heterogeneous domains coupling the BEM with Kansa's method. Engineering Analysis With Boundary Elements, 2012, 36, 1014-1026.	3.7	13
43	Prediction of Vibrations and Reradiated Noise Due to Railway Traffic: A Comprehensive Hybrid Model Based on a Finite Element Method and Method of Fundamental Solutions Approach. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, .	1.6	13
44	On the use of a small-sized acoustic chamber for the analysis of impact sound reduction by floor coverings. Noise Control Engineering Journal, 2010, 58, .	0.3	12
45	2.5D BEM modeling of underwater sound scattering in the presence of a slippage interface separating two flat layered regions. Wave Motion, 2010, 47, 676-692.	2.0	12
46	SOME OBSERVATIONS ON THE BEHAVIOR OF THE METHOD OF FUNDAMENTAL SOLUTIONS IN 3D ACOUSTIC PROBLEMS. International Journal of Computational Methods, 2012, 09, 1250049.	1.3	12
47	Mechanical, Thermal, and Acoustic Properties of Aluminum Foams Impregnated with Epoxy/Graphene Oxide Nanocomposites. Metals, 2019, 9, 1214.	2.3	12
48	Acoustic behavior of porous concrete. Characterization by experimental and inversion methods. Materiales De Construccion, 2019, 69, 202.	0.7	12
49	Simulation of sound absorption in 2D thin elements using a coupled BEM/TBEM formulation in the presence of fixed and moving 3D sources. Journal of Sound and Vibration, 2012, 331, 2386-2403.	3.9	11
50	Frequency domain analysis of interacting acoustic–elastodynamic models taking into account optimized iterative coupling of different numerical methods. Engineering Analysis With Boundary Elements, 2013, 37, 1074-1088.	3.7	11
51	An Efficient Technique for Surface Strain Recovery from Photogrammetric Data using Meshless Interpolation. Strain, 2014, 50, 132-146.	2.4	11
52	Bonding quality assessment of cross-layered Maritime pine elements glued with one-component polyurethane adhesive. Construction and Building Materials, 2019, 211, 571-582.	7.2	11
53	Wave scattering by infinite cylindrical shell structures submerged in a fluid medium. Wave Motion, 2003, 38, 131-149.	2.0	10
54	Boundary element method analyses of transient heat conduction in an unbounded solid layer containing inclusions. Computational Mechanics, 2004, 34, 99.	4.0	10

#	Article	IF	CITATIONS
55	Dynamic analysis of submerged fluid-filled pipelines subjected to a point pressure load. Journal of Sound and Vibration, 2004, 271, 257-277.	3.9	10
56	PREDICTION OF ACOUSTIC WAVE PROPAGATION IN A SHALLOW WATER CONFIGURATION USING THE METHOD OF FUNDAMENTAL SOLUTIONS. Journal of Computational Acoustics, 2012, 20, 1250013.	1.0	10
57	Numerical study towards the use of a SH wave ultrasonic-based strategy for crack detection in concrete structures. Engineering Structures, 2013, 49, 782-791.	5.3	10
58	Effect of parking lanes on assessing the impact of road traffic noise on building façades. Environmental Research, 2020, 184, 109299.	7.5	10
59	2.5D scattering of waves by rigid inclusions buried under a fluid channel via BEM. European Journal of Mechanics, A/Solids, 2005, 24, 957-973.	3.7	9
60	Mitigation of vibrations and re-radiated noise in buildings generated by railway traffic: a parametric study. Procedia Engineering, 2017, 199, 2627-2632.	1.2	9
61	The acoustic behavior of concrete resonators incorporating absorbing materials. Noise Control Engineering Journal, 2010, 58, 27.	0.3	8
62	Numerical Analysis of Acoustic Barriers with a Diffusive Surface Using a 2.5D Boundary Element Model. Journal of Computational Acoustics, 2015, 23, 1550009.	1.0	8
63	Inelastic 2D analysis by adaptive iterative BEM–FEM coupling procedures. Computers and Structures, 2015, 156, 134-148.	4.4	8
64	Evaluation of exposure to road traffic noise: Effects of microphone height and urban configuration. Environmental Research, 2020, 191, 110055.	7.5	8
65	Improving the sound absorption behaviour of porous concrete using embedded resonant structures. Journal of Building Engineering, 2021, 35, 102015.	3.4	8
66	An XFEM multilayered heaviside enrichment for fracture propagation with reduced enhanced degrees of freedom. International Journal for Numerical Methods in Engineering, 2021, 122, 3425-3447.	2.8	8
67	Numerical Simulation of Target Strength Measurements from Near to Far Field of Fish Using the Method of Fundamental Solutions. Acta Acustica United With Acustica, 2018, 104, 25-38.	0.8	8
68	The scattering of 3D sound sources by rigid barriers in the vicinity of tall buildings. Engineering Analysis With Boundary Elements, 2002, 26, 781-787.	3.7	7
69	A Numerical MFS Model for Computational Analysis of Acoustic Horns. Acta Acustica United With Acustica, 2012, 98, 916-927.	0.8	7
70	3D numerical modelling of acoustic horns using the method of fundamental solutions. Engineering Analysis With Boundary Elements, 2015, 51, 64-73.	3.7	7
71	Heat conduction analysis by adaptive iterative BEM-FEM coupling procedures. Engineering Analysis With Boundary Elements, 2016, 73, 79-94.	3.7	7
72	Numerical simulation of soil-structure elastodynamic interaction using iterative-adaptive BEM-FEM coupled strategies. Engineering Analysis With Boundary Elements, 2017, 82, 141-161.	3.7	7

#	Article	IF	CITATIONS
73	Application of the method of fundamental solutions to predict the acoustic performance of T-shaped thin barriers. Engineering Analysis With Boundary Elements, 2019, 99, 142-156.	3.7	7
74	Numerical modelling of finite periodic arrays of acoustic resonators using an efficient 3D BEM model. Engineering Analysis With Boundary Elements, 2019, 102, 73-86.	3.7	7
75	Performance of Low-Height Railway Noise Barriers with Porous Materials. Applied Sciences (Switzerland), 2022, 12, 2960.	2.5	7
76	Numerical modelling for prediction of ground-borne vibrations induced by pile driving. Engineering Structures, 2021, 242, 112533.	5.3	6
77	ACOUSTIC SCATTERING FROM A 2-D FLUID WAVEGUIDE WITH AN IRREGULAR FLOOR VIA THE BEM. Journal of Computational Acoustics, 2001, 09, 367-380.	1.0	5
78	PROPAGATION OF PRESSURE WAVES INSIDE A FLUID CHANNEL WITH AN IRREGULAR FLOOR. Journal of Computational Acoustics, 2002, 10, 183-194.	1.0	5
79	ACOUSTIC INSERTION LOSS PROVIDED BY RIGID ACOUSTIC BARRIERS OF DIFFERENT SHAPES. Journal of Computational Acoustics, 2003, 11, 503-519.	1.0	5
80	Solution of time-domain acoustic wave propagation problems using a RBF interpolation model with "a priori―estimation of the free parameter. Wave Motion, 2011, 48, 423-440.	2.0	5
81	Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish. ICES Journal of Marine Science, 2020, 77, 2870-2881.	2.5	5
82	On the Use of Perforated Sound Absorption Systems for Variable Acoustics Room Design. Buildings, 2021, 11, 543.	3.1	5
83	Acoustic insulation provided by circular and infinite plane walls. Journal of Sound and Vibration, 2004, 273, 681-691.	3.9	4
84	DYNAMIC RESPONSE OF A THREE-DIMENSIONAL FLUID CHANNEL BOUNDED BY AN ELASTIC FLOOR IN THE PRESENCE OF A SUBMERGED INCLUSION VIA BEM. Journal of Computational Acoustics, 2005, 13, 203-227.	1.0	4
85	3D Multi-Domain MFS Analysis of Sound Pressure Level Reduction Between Connected Enclosures. Archives of Acoustics, 2011, 36, .	0.8	4
86	Analytical Evaluation of the Acoustic Behavior of Multilayer Walls When Subjected to Three-Dimensional and Moving 2.5-Dimensional Loads. Journal of Vibration and Acoustics, Transactions of the ASME, 2013, 135, .	1.6	4
87	Modeling of grooved acoustic panels. Applied Acoustics, 2017, 120, 9-14.	3.3	4
88	An Efficient MFS Formulation for the Analysis of Acoustic Scattering by Periodic Structures. Journal of Theoretical and Computational Acoustics, 2018, 26, 1850003.	1.1	4
89	Nonlinear analysis of interacting saturated porous and elastic media by time-domain FEM/BEM iterative coupling procedures. Engineering Analysis With Boundary Elements, 2020, 117, 299-308.	3.7	4
90	Experimental and numerical assessment of a cross-insulated timber panel solution. Engineering Structures, 2021, 235, 112061.	5.3	4

#	Article	IF	CITATIONS
91	The importance of a small wall deformation in the three-dimensional acoustic logging results. Geophysical Journal International, 2002, 151, 403-415.	2.4	3
92	Meshless analysis of soil–structure interaction using an MFS–MLPG coupled approach. Engineering Analysis With Boundary Elements, 2015, 55, 80-92.	3.7	3
93	Experimental validation of a FEM-MFS hybrid numerical approach for vibro-acoustic prediction. Applied Acoustics, 2018, 141, 79-92.	3.3	3
94	Normal incidence sound insulation provided by Sonic Crystal Acoustic Screens made from rigid scatterers – assessment of different simulation methods. Acta Acustica, 2021, 5, 28.	1.0	3
95	APPLICATIONS OF THE GREEN FUNCTIONS IN THE STUDY OF ACOUSTIC PROBLEMS IN OPEN AND CLOSED SPACES. Journal of Sound and Vibration, 2001, 247, 117-130.	3.9	2
96	Coupled Numerical Methods in Engineering Analysis. Mathematical Problems in Engineering, 2011, 2011, 1-4.	1.1	2
97	A Hybrid Analytical-Numerical Model Based on the Method of Fundamental Solutions for the Analysis of Sound Scattering by Buried Shell Structures. Mathematical Problems in Engineering, 2011, 2011, 1-22.	1.1	2
98	Numerical Evaluation of the Vibration Reduction Index for Structural Joints. Archives of Acoustics, 2012, 37, .	0.8	2
99	Formulation of Kansa's method in the frequency domain for the analysis of transient heat conduction. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 1437-1453.	2.8	2
100	Acoustic and thermal behaviour of cross-insulated timber panels. Journal of Building Engineering, 2021, 44, 103309.	3.4	2
101	MFS analysis of the vibration filtering effect of periodic structures in elastic media. International Journal of Computational Methods and Experimental Measurements, 2018, 6, 1108-1119.	0.2	2
102	Iterative coupling between the MFS and Kansa's method for acoustic problems. WIT Transactions on Modelling and Simulation, 2013, , .	0.0	2
103	Frequency and Time Numerical Solutions of 3D Sound Propagation in Open and Closed Spaces. Building Acoustics, 2000, 7, 247-261.	1.9	1
104	Evaluation of Impact Noise Reduction Using a Small-Sized Acoustic Chamber. Noise and Vibration Worldwide, 2012, 43, 11-16.	1.0	1
105	Nonlinear porodynamic analysis by adaptive semi-explicit/explicit time marching formulations. Acta Geotechnica, 2021, 16, 1879-1894.	5.7	1
106	A Simple Method to Estimate the In Situ Performance of Noise Barriers. Applied Sciences (Switzerland), 2022, 12, 7027.	2.5	1
107	Advanced Techniques in Computational Mechanics. Journal of Applied Mathematics, 2014, 2014, 1-2.	0.9	0
108	Special issue on coupling techniques. Engineering Analysis With Boundary Elements, 2015, 55, 1.	3.7	0

#	Article	IF	CITATIONS
109	Three efficient numerical models to analyse the step problem in shallow water. Engineering Analysis With Boundary Elements, 2016, 62, 44-56.	3.7	0
110	Damage Detection on Timber Floors' Supports through Dynamic Analysis. International Journal of Architectural Heritage, 0, , 1-10.	3.1	0
111	An Efficient MFS Formulation for the Analysis of Acoustic Scattering by Periodic Structures. Journal of Computational Acoustics, 0, , 1850003.	1.0	0
112	Numerical analysis of the shielding effect provided by periodic elastic scatterers. MATEC Web of Conferences, 2018, 211, 13005.	0.2	0
113	Proposal of a simplified method for the prediction of impact sound insulation between rooms, from below to above. Noise Control Engineering Journal, 2018, 66, 276-286.	0.3	0
114	Adaptive Analysis of Acoustic-Elastodynamic Interacting Models Considering Frequency Domain MFS-FEM Coupled Formulations. Mathematical Problems in Engineering, 2019, 2019, 1-18.	1.1	0
115	Locally-enriched procedure to simulate acoustic wave propagation in discontinuous media. Journal of Sound and Vibration, 2021, 500, 116038.	3.9	0
116	ACOUSTIC BEHAVIOR OF ELASTIC SCREENS IN OPEN AND CONFINED SPACES. , 2004, , .		0
117	WAVE SCATTERING BY A RIGID INCLUSION SUBMERGED IN A CHANNEL BOUNDED BY A SEDIMENT LAYER OVER A RIGID BOUNDARY. , 2004, , .		0
118	Using a Dual-BEM formulation to model the sound pressure wavefield provided by absorbing thin screens attached to the walls of a duct. WIT Transactions on Modelling and Simulation, 2012, , .	0.0	0
119	A coupling strategy between the BEM and Kansa's method for acoustic analysis of heterogeneous media. WIT Transactions on Modelling and Simulation, 2012, , .	0.0	0
120	Meshless analysis of soil-structure interaction using a MFS-MLPG coupled approach. , 2013, , .		0
121	3D Analysis of the Sound Reduction Provided by Protective Surfaces Around a Noise Source. International Journal of Acoustics and Vibrations, 2014, 19, .	0.3	0
122	An efficient MFS model for the analysis of sonic crystals including fluid–solid interaction. , 2014, , .		0
123	An ACA-MFS approach for the analysis of sound propagation in sonic crystals. WIT Transactions on Modelling and Simulation, 2015, , .	0.0	0
124	NUMERICAL ANALYSIS OF BURIED VIBRATION PROTECTION DEVICES USING THE METHOD OF FUNDAMENTAL SOLUTIONS. , 2019, , .		0
125	A Local Radial Basis Function Interpolation Model to Simulate Time-Domain Acoustic Wave Propagation. , 0, , .		0
126	Sound Emission from a Three-Dimensional Enclosure with an Opening using a Boundary Element Method. , 0, , .		0