
Lu Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3826422/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	An ignored potential microplastic contamination of a typical waste glass recycling base. Journal of Hazardous Materials, 2022, 422, 126854.	12.4	12
2	Characteristics of unorganized emissions of microplastics from road fugitive dust in urban mining bases. Science of the Total Environment, 2022, 827, 154355.	8.0	14
3	Debromination process of Br-containing PS of E-wastes and reuse with virgin PS. Journal of Hazardous Materials, 2022, 431, 128526.	12.4	3
4	Thermal desorption behavior of fluoroquinolones in contaminated soil of livestock and poultry breeding. Environmental Research, 2022, 211, 113101.	7.5	7
5	Thermal defluorination behaviors of PFOS, PFOA and PFBS during regeneration of activated carbon by molten salt. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	5
6	Self-catalytic pyrolysis thermodynamics of waste printed circuit boards with co-existing metals. Frontiers of Environmental Science and Engineering, 2022, 16, .	6.0	4
7	Recycling Ag, As, Ga of waste light-emitting diodes via subcritical water treatment. Journal of Hazardous Materials, 2021, 408, 124409.	12.4	15
8	Catalytic effect and mechanism of coexisting copper on conversion of organics during pyrolysis of waste printed circuit boards. Journal of Hazardous Materials, 2021, 403, 123465.	12.4	42
9	Novel targetedly extracting lithium: An environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries recovery. Journal of Hazardous Materials, 2021, 404, 123947.	12.4	54
10	Utilizing E-Waste for Construction of Magnetic and Core–Shell Z-Scheme Photocatalysts: An Effective Approach to E-Waste Recycling. Environmental Science & Technology, 2021, 55, 1279-1289.	10.0	22
11	Study on the remediation of tetracycline antibiotics and roxarsone contaminated soil. Environmental Pollution, 2021, 271, 116312.	7.5	19
12	Hydrothermal Leaching Behavior of Manganese from Waste Zn–Mn Dry Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 3137-3144.	6.7	5
13	Unveiling the Control Mechanism of the Carbothermal Reduction Reaction for Waste Li-Ion Battery Recovery: Providing Instructions for Its Practical Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 9418-9425.	6.7	15
14	Biochar modulates mineral nitrogen dynamics in soil and terrestrial ecosystems: A critical review. Chemosphere, 2021, 278, 130378.	8.2	42
15	Research of the thermal decomposition mechanism and pyrolysis pathways from macromonomer to small molecule of waste printed circuit board. Journal of Hazardous Materials, 2020, 383, 121234.	12.4	58
16	Leaching behavior of Sb and Br from E-waste flame retardant plastics. Chemosphere, 2020, 245, 125684.	8.2	16
17	A novel method of preparing ultrafine ZnS particles from waste zinc–manganese batteries by evaporation–separation, sulfurization and inert gas condensation. Nanotechnology, 2020, 31, 135601.	2.6	1
18	Preparing nano-zinc oxide with high-added-value from waste zinc manganese battery by vacuum evaporation and oxygen-control oxidation. Journal of Cleaner Production, 2020, 251, 119691.	9.3	17

Lu Zhan

#	Article	IF	CITATIONS
19	In-situ debromination mechanism based on self-activation and catalysis of Ca(OH)2 during pyrolysis of waste printed circuit boards. Journal of Hazardous Materials, 2020, 392, 122447.	12.4	28
20	Reduction, detoxification and recycling of solid waste by hydrothermal technology: A review. Chemical Engineering Journal, 2020, 390, 124651.	12.7	76
21	Recycling of metals (Ga, In, As and Ag) from waste light-emitting diodes in sub/supercritical ethanol. Resources, Conservation and Recycling, 2020, 155, 104695.	10.8	28
22	A cleaner approach to the discharge process of spent lithium ion batteries in different solutions. Journal of Cleaner Production, 2020, 255, 120064.	9.3	55
23	Novel Recycle Technology for Recovering Gallium Arsenide from Scraped Integrated Circuits. ACS Sustainable Chemistry and Engineering, 2020, 8, 2874-2882.	6.7	12
24	Decomposition of Packaging Materials and Recycling GaAs from Waste ICs by Hydrothermal Treatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 14111-14118.	6.7	13
25	Hydrothermal Treatment of E-Waste Plastics for Tertiary Recycling: Product Slate and Decomposition Mechanisms. ACS Sustainable Chemistry and Engineering, 2019, 7, 1464-1473.	6.7	59
26	A novel method of preparing PbS from waste lead paste through in-situ vulcanization and reduction. Journal of Cleaner Production, 2019, 208, 778-784.	9.3	14
27	Recycle Gallium and Arsenic from GaAs-Based E-Wastes via Pyrolysis–Vacuum Metallurgy Separation: Theory and Feasibility. ACS Sustainable Chemistry and Engineering, 2018, 6, 1336-1342.	6.7	35
28	Products derived from waste plastics (PC, HIPS, ABS, PP and PA6) via hydrothermal treatment: Characterization and potential applications. Chemosphere, 2018, 207, 742-752.	8.2	59
29	Recycling Zinc and Preparing High-Value-Added Nanozinc Oxide from Waste Zinc–Manganese Batteries by High-Temperature Evaporation-Separation and Oxygen Control Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 12104-12109.	6.7	15
30	Recycling Arsenic from Gallium Arsenide Scraps through Sulfurizing Thermal Treatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 3179-3185.	6.7	12
31	Preparing ultrafine PbS powders from the scrap lead-acid battery by sulfurization and inert gas condensation. Journal of Power Sources, 2017, 341, 435-442.	7.8	17
32	Preparing lead oxide nanoparticles from waste electric and electronic equipment by high temperature oxidation-evaporation and condensation. Powder Technology, 2017, 308, 30-36.	4.2	12
33	A novel method of preparing highly dispersed spherical lead nanoparticles from solders of waste printed circuit boards. Chemical Engineering Journal, 2016, 303, 261-267.	12.7	31
34	Preparation of zinc nano structured particles from spent zinc manganese batteries by vacuum separation and inert gas condensation. Separation and Purification Technology, 2015, 142, 227-233.	7.9	60
35	Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes. Journal of Hazardous Materials, 2015, 299, 388-394.	12.4	78
36	Vacuum Separation Behavior of Pb from Copper-Rich Particles of Crushed E-Wastes. Separation Science and Technology, 2014, 49, 2440-2447.	2.5	2

Lu Zhan

#	Article	IF	CITATIONS
37	Assessment of heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system for recycling heavy metals from crushed e-wastes. Waste Management and Research, 2014, 32, 1247-1253.	3.9	2
38	State-of-the-Art of Recycling E-Wastes by Vacuum Metallurgy Separation. Environmental Science & Technology, 2014, 48, 14092-14102.	10.0	79
39	Separating Criterion of Pb, Cd, Bi and Zn from Metallic Particles of Crushed Electronic Wastes by Vacuum Evaporation. Separation Science and Technology, 2012, 47, 913-919.	2.5	16
40	Separating and Recovering Pb from Copper-Rich Particles of Crushed Waste Printed Circuit Boards by Evaporation and Condensation. Environmental Science & Technology, 2011, 45, 5359-5365.	10.0	70
41	Separating zinc from copper and zinc mixed particles using vacuum sublimation. Separation and Purification Technology, 2009, 68, 397-402.	7.9	34
42	Separating and Recycling Metals from Mixed Metallic Particles of Crushed Electronic Wastes by Vacuum Metallurgy. Environmental Science & Technology, 2009, 43, 7074-7078.	10.0	60
43	Application of Vacuum Metallurgy to Separate Pure Metal from Mixed Metallic Particles of Crushed Waste Printed Circuit Board Scraps. Environmental Science & Technology, 2008, 42, 7676-7681.	10.0	78
44	The Human-Machine Interface Design Based on Labview for Recycling Metals from Mixed Metallic Particles. Advanced Materials Research, 0, 878, 368-373.	0.3	3