Ethan S Sokol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3826387/publications.pdf

Version: 2024-02-01

361413 302126 1,780 49 20 39 citations h-index g-index papers 51 51 51 3144 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic alterations drive metastases formation in pancreatic ductal adenocarcinoma cancer: deciphering the role of CDKN2A and CDKN2B in mediating liver tropism. Oncogene, 2022, 41, 1468-1481.	5.9	4
2	Homologous Recombination Deficiency: Concepts, Definitions, and Assays. Oncologist, 2022, 27, 167-174.	3.7	69
3	<i>NTRK</i> gene fusions are detected in both secretory and nonâ€secretory breast cancers. Pathology International, 2022, 72, 187-192.	1.3	9
4	Abstract P3-08-02: The frequency and somatic mutation landscape of Fibroblast growth factor receptor (<i>FGFR</i>) alterations in breast cancer. Cancer Research, 2022, 82, P3-08-02-P3-08-02.	0.9	2
5	Concurrent BRAFV600E and BRCA Mutations in MSS Metastatic Colorectal Cancer: Prevalence and Case Series of mCRC patients with prolonged OS. Cancer Treatment and Research Communications, 2022, 32, 100569.	1.7	1
6	The Molecular Landscape of Pancreatobiliary Cancers for Novel Targeted Therapies From Real-World Genomic Profiling. Journal of the National Cancer Institute, 2022, 114, 1279-1286.	6.3	8
7	Clustered 8-Oxo-Guanine Mutations and Oncogenic Gene Fusions in Microsatellite-Unstable Colorectal Cancer. JCO Precision Oncology, 2022, 6, e2100477.	3.0	2
8	PARP Inhibitor Insensitivity to <i>BRCA1/2</i> Monoallelic Mutations in Microsatellite Instability-High Cancers. JCO Precision Oncology, 2022, , .	3.0	15
9	Clinical, histopathologic, and molecular profiles of PRKAR1A-inactivated melanocytic neoplasms. Journal of the American Academy of Dermatology, 2021, 84, 1069-1071.	1.2	5
10	Comprehensive Genomic Profiling of Carcinoma of Unknown Primary Origin: Retrospective Molecular Classification Considering the CUPISCO Study Design. Oncologist, 2021, 26, e394-e402.	3.7	39
11	Predictive Biomarkers for Immune Checkpoint Inhibitors in Metastatic Breast Cancer. Cancer Medicine, 2021, 10, 53-61.	2.8	39
12	Somatic HLA Class I Loss Is a Widespread Mechanism of Immune Evasion Which Refines the Use of Tumor Mutational Burden as a Biomarker of Checkpoint Inhibitor Response. Cancer Discovery, 2021, 11, 282-292.	9.4	132
13	Case Report: Multiple Chromosomal Translocations Including Novel CIITA-CREBBP Fusion and Mutations in a Follicular Lymphoma. Frontiers in Oncology, 2021, 11, 620435.	2.8	2
14	Clinically Advanced Pheochromocytomas and Paragangliomas: A Comprehensive Genomic Profiling Study. Cancers, 2021, 13, 3312.	3.7	9
15	Prediction and characterization of diffuse large B-cell lymphoma cell-of-origin subtypes using targeted sequencing. Future Oncology, 2021, 17, 4171-4183.	2.4	3
16	Abstract 2233: Landscape of driver mutations in MAPK/PI3K/AKT signaling pathways reveals insights into therapeutic targeting strategies., 2021,,.		0
17	Contrasting genomic profiles from metastatic sites, primary tumors, and liquid biopsies of advanced prostate cancer. Cancer, 2021, 127, 4557-4564.	4.1	5
18	Novel somatic alterations in unicentric and idiopathic multicentric Castleman disease. European Journal of Haematology, 2021, 107, 642-649.	2.2	4

#	Article	IF	CITATIONS
19	Genomic profiling of solid tumors harboring BRD4-NUT and response to immune checkpoint inhibitors. Translational Oncology, 2021, 14, 101184.	3.7	13
20	Tumor Mutational Burden as a Predictive Biomarker for Response to Immune Checkpoint Inhibitors: A Review of Current Evidence. Oncologist, 2020, 25, e147-e159.	3.7	220
21	The Pan ancer Landscape of Coamplification of the Tyrosine Kinases KIT, KDR, and PDGFRA. Oncologist, 2020, 25, e39-e47.	3.7	13
22	<i>CDKN2C</i> -Null Leiomyosarcoma: A Novel, Genomically Distinct Class of ⟨i>TP53/⟨i>RB1–Wild-Type Tumor With Frequent ⟨i>CIC Genomic Alterations and 1p/19q-Codeletion. JCO Precision Oncology, 2020, 4, 955-971.	3.0	6
23	An ErbB2 splice variant lacking exon 16 drives lung carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20139-20148.	7.1	11
24	Durable Remission of Human Papillomavirus–Positive JAK2/PDL1/PDL2–Amplified Urethral Squamous Carcinoma With Sequential Chemotherapy and Immune Checkpoint Inhibitor Therapy. JCO Precision Oncology, 2020, 4, 860-864.	3.0	0
25	Functional characterization of SMARCA4 variants identified by targeted exome-sequencing of 131,668 cancer patients. Nature Communications, 2020, 11, 5551.	12.8	52
26	Pan-Cancer Analysis of <i>BRCA1</i> and <i>BRCA2</i> Genomic Alterations and Their Association With Genomic Instability as Measured by Genome-Wide Loss of Heterozygosity. JCO Precision Oncology, 2020, 4, 442-465.	3.0	103
27	The genomic landscape of metastatic breast cancer: Insights from 11,000 tumors. PLoS ONE, 2020, 15, e0231999.	2.5	36
28	CYLD-mutant cylindroma-like basaloid carcinoma of the anus: a genetically and morphologically distinct class of HPV-related anal carcinoma. Modern Pathology, 2020, 33, 2614-2625.	5.5	9
29	Melanoma with in-frame deletion of MAP2K1: a distinct molecular subtype of cutaneous melanoma mutually exclusive from BRAF, NRAS, and NF1 mutations. Modern Pathology, 2020, 33, 2397-2406.	5.5	16
30	Pan-sarcoma genomic analysis of KMT2A rearrangements reveals distinct subtypes defined by YAP1–KMT2A–YAP1 and VIM–KMT2A fusions. Modern Pathology, 2020, 33, 2307-2317.	5.5	24
31	Vulvar Squamous Cell Carcinoma: Comprehensive Genomic Profiling of HPV+ Versus HPV– Forms Reveals Distinct Sets of Potentially Actionable Molecular Targets. JCO Precision Oncology, 2020, 4, 647-661.	3.0	21
32	Melanomas with activating RAF1 fusions: clinical, histopathologic, and molecular profiles. Modern Pathology, 2020, 33, 1466-1474.	5.5	28
33	Durable Complete Response With Immune Checkpoint Inhibitor in Breast Cancer With High Tumor Mutational Burden and APOBEC Signature. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 517-521.	4.9	25
34	Tumor Mutational Burden and PD-L1 Expression in Hematologic Malignancies. Blood, 2020, 136, 15-17.	1.4	0
35	Microsatellite-Stable Tumors with High Mutational Burden Benefit from Immunotherapy. Cancer Immunology Research, 2019, 7, 1570-1573.	3.4	190
36	Loss of Slug Compromises DNA Damage Repair and Accelerates Stem Cell Aging in Mammary Epithelium. Cell Reports, 2019, 28, 394-407.e6.	6.4	30

#	Article	IF	Citations
37	Clinical and Immunological Implications of Frameshift Mutations in Lung Cancer. Journal of Thoracic Oncology, 2019, 14, 1807-1817.	1.1	27
38	Pan-Cancer Analysis of <i>CDK12</i> Loss-of-Function Alterations and Their Association with the Focal Tandem-Duplicator Phenotype. Oncologist, 2019, 24, 1526-1533.	3.7	39
39	The Genomic Landscape of Merkel Cell Carcinoma and Clinicogenomic Biomarkers of Response to Immune Checkpoint Inhibitor Therapy. Clinical Cancer Research, 2019, 25, 5961-5971.	7.0	118
40	Frequent ESR1 and CDK Pathway Copy-Number Alterations in Metastatic Breast Cancer. Molecular Cancer Research, 2019, 17, 457-468.	3.4	29
41	Comprehensive Genomic Profiling of 104 Rare Histiocytic and Dendritic Cell Neoplasms Reveals Shared and Distinct Targetable Genomic Alterations. Blood, 2019, 134, 2541-2541.	1.4	2
42	Loss of Heterozygosity of FLT3-ITD Is Common in Acute Myeloid Leukemia and May be a More Consistent Prognostic Marker Than FLT3-ITD Allele Frequency. Blood, 2019, 134, 1437-1437.	1,4	2
43	BCL11B Drives Human Mammary Stem Cell Self-Renewal InÂVitro by Inhibiting Basal Differentiation. Stem Cell Reports, 2018, 10, 1131-1145.	4.8	9
44	Cancer cells exhibit clonal diversity in phenotypic plasticity. Open Biology, 2017, 7, 160283.	3.6	30
45	Perturbation-Expression Analysis Identifies RUNX1 as a Regulator of Human Mammary Stem Cell Differentiation. PLoS Computational Biology, 2015, 11, e1004161.	3.2	22
46	De-Differentiation Confers Multidrug Resistance Via Noncanonical PERK-Nrf2 Signaling. PLoS Biology, 2014, 12, e1001945.	5.6	94
47	The endoplasmic reticulum may be an Achilles' heel of cancer cells that have undergone an epithelial-to-mesenchymal transition. Molecular and Cellular Oncology, 2014, 1, e961822.	0.7	4
48	Epithelial-to-Mesenchymal Transition Activates PERK–eIF2α and Sensitizes Cells to Endoplasmic Reticulum Stress. Cancer Discovery, 2014, 4, 702-715.	9.4	250
49	Genomic landscape of lymphatic malformations: a case series and response to the PI3K \hat{l} ± inhibitor alpelisib in an N-of-1 clinical trial. ELife, 0, 11, .	6.0	8