Niloy Kundu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3826213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorescent carbon nano-materials from coal-based precursors: unveiling structure–function relationship between coal and nano-materials. Carbon Letters, 2022, 32, 671-702.	3.3	5
2	Modulation of Membrane Fluidity to Control Interfacial Water Structure and Dynamics in Saturated and Unsaturated Phospholipid Vesicles. Langmuir, 2020, 36, 12423-12434.	1.6	7
3	Dynamics of the vesicles composed of fatty acids and other amphiphile mixtures: unveiling the role of fatty acids as a model protocell membrane. Biophysical Reviews, 2020, 12, 1117-1131.	1.5	19
4	Highly fluorescent carbon dots from quinoline insoluble residues in coal tar. Optical Materials, 2020, 100, 109638.	1.7	10
5	Broad Spectrum Tunable Photoluminescent Material Based on Cascade Fluorescence Resonance Energy Transfer between Three Fluorophores Encapsulated within the Self-Assembled Surfactant Systems. Journal of Physical Chemistry B, 2019, 123, 9699-9711.	1.2	7
6	Self-Assembly of Amphiphiles into Vesicles and Fibrils: Investigation of Structure and Dynamics Using Spectroscopy and Microscopy Techniques. Langmuir, 2018, 34, 11637-11654.	1.6	41
7	Membrane perturbation through novel cell-penetrating peptides influences intracellular accumulation of imatinib mesylate in CML cells. Cell Biology and Toxicology, 2018, 34, 233-245.	2.4	4
8	A cell-penetrating peptide induces the self-reproduction of phospholipid vesicles: understanding the role of the bilayer rigidity. Chemical Communications, 2018, 54, 11451-11454.	2.2	22
9	Protein-Guided Formation of Silver Nanoclusters and Their Assembly with Graphene Oxide as an Improved Bioimaging Agent with Reduced Toxicity. Journal of Physical Chemistry Letters, 2017, 8, 2291-2297.	2.1	32
10	Sodium Chloride Triggered the Fusion of Vesicle Composed of Fatty Acid Modified Protic Ionic Liquid: A New Insight into the Membrane Fusion Monitored through Fluorescence Lifetime Imaging Microscopy. Journal of Physical Chemistry B, 2017, 121, 24-34.	1.2	22
11	Unveiling the Interaction between Fatty-Acid-Modified Membrane and Hydrophilic Imidazolium-Based Ionic Liquid: Understanding the Mechanism of Ionic Liquid Cytotoxicity. Journal of Physical Chemistry B, 2017, 121, 8162-8170.	1.2	25
12	A Comparative Study of the Influence of Sugars Sucrose, Trehalose, and Maltose on the Hydration and Diffusion of DMPC Lipid Bilayer at Complete Hydration: Investigation of Structural and Spectroscopic Aspect of Lipid–Sugar Interaction. Langmuir, 2016, 32, 5124-5134.	1.6	56
13	A new strategy to prepare giant vesicles from surface active ionic liquids (SAILs): a study of protein dynamics in a crowded environment using a fluorescence correlation spectroscopic technique. Physical Chemistry Chemical Physics, 2016, 18, 14520-14530.	1.3	27
14	Modulation of the Excited-State Dynamics of 2,2′-Bipyridine-3,3′-diol in Crown Ethers: A Possible Way To Control the Morphology of a Glycine Fibril through Fluorescence Lifetime Imaging Microscopy. Journal of Physical Chemistry B, 2016, 120, 11247-11255.	1.2	18
15	Solvation, rotational relaxation and fluorescence correlation spectroscopic study on ionic liquid-in-oil microemulsions containing triple-chain surface active ionic liquids (SAILs). RSC Advances, 2016, 6, 74604-74613.	1.7	4
16	Proton Transfer Pathways of 2,2′-Bipyridine-3,3′-diol in pH Responsive Fatty Acid Self-Assemblies: Multiwavelength Fluorescence Lifetime Imaging in a Single Vesicle. Langmuir, 2016, 32, 13284-13295.	1.6	15
17	Ionic liquids in microemulsions: Formulation and characterization. Current Opinion in Colloid and Interface Science, 2016, 25, 27-38.	3.4	58
18	Translational and Rotational Diffusion of Two Differently Charged Solutes in Ethylammonium Nitrate–Methanol Mixture: Does the Nanostructure of the Amphiphiles Influence the Motion of the Solute?. Journal of Physical Chemistry B, 2016, 120, 5481-5490.	1.2	15

NILOY KUNDU

#	Article	IF	CITATIONS
19	Unveiling the Mode of Interaction of Berberine Alkaloid in Different Supramolecular Confined Environments: Interplay of Surface Charge between Nano-Confined Charged Layer and DNA. Journal of Physical Chemistry B, 2016, 120, 1106-1120.	1.2	33
20	Comparative Fluorescence Resonance Energy-Transfer Study in Pluronic Triblock Copolymer Micelle and Niosome Composed of Biological Component Cholesterol: An Investigation of Effect of Cholesterol and Sucrose on the FRET Parameters. Journal of Physical Chemistry B, 2016, 120, 131-142.	1.2	31
21	Vesicles Formation by Zwitterionic Micelle and Poly- <scp>l</scp> -lysine: Solvation and Rotational Relaxation Study. Journal of Physical Chemistry B, 2015, 119, 8285-8292.	1.2	6
22	Spectroscopy and Fluorescence Lifetime Imaging Microscopy To Probe the Interaction of Bovine Serum Albumin with Graphene Oxide. Langmuir, 2015, 31, 13793-13801.	1.6	63
23	Stimuli-Sensitive Breathing of Cucurbit[7]uril Cavity: Monitoring through the Environment Responsive Fluorescence of 1′-Hydroxy-2′-acetonaphthone (HAN). Journal of Physical Chemistry B, 2015, 119, 2310-2322.	1.2	30
24	Picosecond solvation dynamics—A potential viewer of DMSO—Water binary mixtures. Journal of Chemical Physics, 2015, 142, 054505.	1.2	34
25	How Does the Surface Charge of Ionic Surfactant and Cholesterol Forming Vesicles Control Rotational and Translational Motion of Rhodamine 6G Perchlorate (R6G ClO ₄)?. Langmuir, 2015, 31, 2310-2320.	1.6	44
26	Picosecond Solvation and Rotational Dynamics: An Attempt to Reinvestigate the Mystery of Alcohol–Water Binary Mixtures. Journal of Physical Chemistry B, 2015, 119, 9905-9919.	1.2	25
27	Denaturation properties and folding transition states of leghemoglobin and other heme proteins. Biochemistry (Moscow), 2015, 80, 463-472.	0.7	4
28	Modulation of the aggregation properties of sodium deoxycholate in presence of hydrophilic imidazolium based ionic liquid: water dynamics study to probe the structural alteration of the aggregates. Physical Chemistry Chemical Physics, 2015, 17, 25216-25227.	1.3	18
29	Graphene Oxide and Pluronic Copolymer Aggregates–Possible Route to Modulate the Adsorption of Fluorophores and Imaging of Live Cells. Journal of Physical Chemistry C, 2015, 119, 25023-25035.	1.5	25
30	How does bile salt penetration affect the self-assembled architecture of pluronic P123 micelles? – light scattering and spectroscopic investigations. Physical Chemistry Chemical Physics, 2015, 17, 19977-19990.	1.3	31
31	Excited-State Proton Transfer Dynamics of Firefly's Chromophore <scp>D</scp> -Luciferin in DMSO–Water Binary Mixture. Journal of Physical Chemistry B, 2014, 118, 13946-13953.	1.2	14
32	Effect of room temperature surface active ionic liquids on aggregated nanostructures of γ-Cyclodextrins: A picosecond fluorescence spectroscopic study. Chemical Physics Letters, 2014, 601, 174-180.	1.2	5
33	Effect of Confinement on Excited-State Proton Transfer of Firefly's Chromophore <scp>d</scp> -Luciferin in AOT Reverse Micelles. Journal of Physical Chemistry B, 2014, 118, 3401-3408.	1.2	12
34	Spectroscopic investigation of the binding interactions of a membrane potential molecule in various supramolecular confined environments: contrasting behavior of surfactant molecules in relocation or release of the probe between nanocarriers and DNA surface. Physical Chemistry Chemical Physics, 2014, 16, 25024-25038.	1.3	24
35	Interaction of gold nanoclusters with IR light emitting cyanine dyes: a systematic fluorescence quenching study. Physical Chemistry Chemical Physics, 2014, 16, 17272.	1.3	16
36	Effect of Encapsulation of Curcumin in Polymeric Nanoparticles: How Efficient to Control ESIPT Process?. Langmuir, 2014, 30, 10834-10844.	1.6	43

NILOY KUNDU

#	Article	IF	CITATIONS
37	Organic Additive, 5-Methylsalicylic Acid Induces Spontaneous Structural Transformation of Aqueous Pluronic Triblock Copolymer Solution: A Spectroscopic Investigation of Interaction of Curcumin with Pluronic Micellar and Vesicular Aggregates. Journal of Physical Chemistry B, 2014, 118, 11437-11448.	1.2	40
38	Unique Influence of Cholesterol on Modifying the Aggregation Behavior of Surfactant Assemblies: Investigation of Photophysical and Dynamical Properties of 2,2′-Bipyridine-3,3′-diol, BP(OH) ₂ in Surfactant Micelles, and Surfactant/Cholesterol Forming Vesicles. Journal of Physical Chemistry B, 2014, 118, 9329-9340.	1.2	20
39	Interaction of fluorescence dyes with 5-fluorouracil: A photoinduced electron transfer study in bulk and biologically relevant water. Chemical Physics Letters, 2014, 613, 115-121.	1.2	0
40	Exploring the Photophysics of Curcumin in Zwitterionic Micellar System: An Approach to Control ESIPT Process in the Presence of Room Temperature Ionic Liquids (RTILs) and Anionic Surfactant. Journal of Physical Chemistry B, 2014, 118, 3669-3681.	1.2	33
41	Vesicles Formed in Aqueous Mixtures of Cholesterol and Imidazolium Surface Active Ionic Liquid: A Comparison with Common Cationic Surfactant by Water Dynamics. Journal of Physical Chemistry B, 2014, 118, 5913-5923.	1.2	54
42	Fluorescence Resonance Energy Transfer in Microemulsions Composed of Tripled-Chain Surface Active Ionic Liquids, RTILs, and Biological Solvent: An Excitation Wavelength Dependence Study. Journal of Physical Chemistry B, 2013, 117, 9508-9517.	1.2	28
43	Unique Characteristics of Ionic Liquids Comprised of Long-Chain Cations and Anions: A New Physical Insight. Journal of Physical Chemistry B, 2013, 117, 3927-3934.	1.2	40