
Sandra J Hewett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3826082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Cystine/Glutamate Antiporter System x _c ^{â^²} in Health and Disease: From Molecular Mechanisms to Novel Therapeutic Opportunities. Antioxidants and Redox Signaling, 2013, 18, 522-555.	2.5	689
2	Mechanisms of the Antioxidant Effects of Nitric Oxide. Antioxidants and Redox Signaling, 2001, 3, 203-213.	2.5	341
3	Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron, 1994, 13, 487-494.	3.8	297
4	Chemotherapy for the Brain: The Antitumor Antibiotic Mithramycin Prolongs Survival in a Mouse Model of Huntington's Disease. Journal of Neuroscience, 2004, 24, 10335-10342.	1.7	181
5	Interleukinâ€1β: a bridge between inflammation and excitotoxicity?. Journal of Neurochemistry, 2008, 106, 1-23.	2.1	125
6	Interferon- \hat{I}^3 and interleukin- $1\hat{I}^2$ induce nitric oxide formation from primary mouse astrocytes. Neuroscience Letters, 1993, 164, 229-232.	1.0	114
7	A microtiter trypan blue absorbance assay for the quantitative determination of excitotoxic neuronal injury in cell culture. Journal of Neuroscience Methods, 2000, 100, 157-163.	1.3	109
8	System x _c ^{â^'} Activity and Astrocytes Are Necessary for Interleukin-1β-Mediated Hypoxic Neuronal Injury. Journal of Neuroscience, 2007, 27, 10094-10105.	1.7	101
9	Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes. Journal of Neuroscience Methods, 2006, 150, 128-137.	1.3	97
10	Main path and byways: nonâ€vesicular glutamate release by system x _c ^{â^'} as an important modifier of glutamatergic neurotransmission. Journal of Neurochemistry, 2015, 135, 1062-1079.	2.1	88
11	Inhibition of nitric oxide formation does not protect murine cortical cell cultures from N-methyl-d-aspartate neurotoxicity. Brain Research, 1993, 625, 337-341.	1.1	79
12	Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. , 2006, 112, 335-357.		77
13	SIN-1-induced cytotoxicity in mixed cortical cell culture: peroxynitrite-dependent and -independent induction of excitotoxic cell death. Journal of Neurochemistry, 2008, 79, 445-455.	2.1	77
14	Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Experimental Biology and Medicine, 2021, 246, 1069-1083.	1.1	73
15	Regulation of System x _c ^{â^'} Activity and Expression in Astrocytes by Interleukinâ€1β. Glia, 2010, 58, 1806-1815.	2.5	72
16	Potentiation of Oxygen-Glucose Deprivation–Induced Neuronal Death After Induction of iNOS. Stroke, 1996, 27, 1586-1591.	1.0	72
17	Inhibition of System Xcâ~' Transporter Attenuates Autoimmune Inflammatory Demyelination. Journal of Immunology, 2015, 195, 450-463.	0.4	67
18	Guide for the use of nitric oxide (NO) donors as probes of the chemistry of NO and related redox species in biological systems. Methods in Enzymology, 2002, 359, 84-105.	0.4	66

SANDRA J HEWETT

#	Article	IF	CITATIONS
19	TGF-Î ² 1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia, 2006, 54, 566-577.	2.5	63
20	Analysis of the Neuroprotective Effects of Various Nitric Oxide Donor Compounds in Murine Mixed Cortical Cell Culture. Journal of Neurochemistry, 2008, 72, 1843-1852.	2.1	58
21	Interleukin-1β in Central Nervous System Injury and Repair. European Journal of Neurodegenerative Disease, 2012, 1, 195-211.	0.0	56
22	Inducible nitric oxide synthase expression in cultures enriched for mature oligodendrocytes is due to microglia. , 1999, 56, 189-198.		47
23	Hypoxia modulates nitric oxide-induced regulation of NMDA receptor currents and neuronal cell death. American Journal of Physiology - Cell Physiology, 1999, 277, C673-C683.	2.1	44
24	Pre-Conditioning Induces the Precocious Differentiation of Neonatal Astrocytes to Enhance Their Neuroprotective Properties. ASN Neuro, 2011, 3, AN20100029.	1.5	37
25	Interferon-Î ³ reduces cyclooxygenase-2-mediated prostaglandin E2 production from primary mouse astrocytes independent of nitric oxide formation. Journal of Neuroimmunology, 1999, 94, 134-143.	1.1	36
26	Potassium-evoked Glutamate Release Liberates Arachidonic Acid from Cortical Neurons. Journal of Biological Chemistry, 2002, 277, 43881-43887.	1.6	35
27	Prophylactic, prandial rofecoxib treatment lacks efficacy against acute PTZâ€induced seizure generation and kindling acquisition. Epilepsia, 2011, 52, 273-283.	2.6	35
28	Interleukinâ€1β protects astrocytes against oxidantâ€induced injury via an <scp>NF</scp> â€₽ <scp>B</scp> â€Dependent upregulation of glutathione synthesis. Glia, 2015, 63, 1568-1580.	2.5	35
29	Oral Treatment with Rofecoxib Reduces Hippocampal Excitotoxic Neurodegeneration. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 1219-1224.	1.3	34
30	Changes in secondary glutamate release underlie the developmental regulation of excitotoxic neuronal cell death. Neuroscience, 2005, 132, 929-942.	1.1	33
31	Neurotoxicity of nitroxyl: Insights into HNO and NO biochemical imbalance. Free Radical Biology and Medicine, 2005, 39, 1478-1488.	1.3	32
32	Passive Transfer of Lambert-Eaton Myasthenic Syndrome Induces Dihydropyridine Sensitivity of I Ca in Mouse Motor Nerve Terminals. Journal of Neurophysiology, 1998, 80, 1056-1069.	0.9	30
33	Interleukin-1β potentiates neuronal injury in a variety of injury models involving energy deprivation. Journal of Neuroimmunology, 2005, 161, 93-100.	1.1	29
34	TGF $^{12}1$ and TNF 12 potentiate nitric oxide production in astrocyte cultures by recruiting distinct subpopulations of cells to express NOS-2. Neurochemistry International, 2008, 52, 962-971.	1.9	28
35	Murine encephalitogenic lymphoid cells induce nitric oxide synthase in primary astrocytes. Journal of Neuroimmunology, 1996, 64, 201-208.	1.1	26
36	Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity. Journal of Neurochemistry, 2009, 110, 1766-1773.	2.1	26

SANDRA J HEWETT

#	Article	IF	CITATIONS
37	Neuromodulatory role of endogenous interleukin- $1\hat{l}^2$ in acute seizures: Possible contribution of cyclooxygenase-2. Neurobiology of Disease, 2012, 45, 234-242.	2.1	25
38	Naproxen Reduces Excitotoxic Neurodegeneration in Vivo with an Extended Therapeutic Window. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1060-1066.	1.3	24
39	Non-Cell Autonomous Influence of the Astrocyte System x _c ^{â^'} on Hypoglycaemic Neuronal Cell Death. ASN Neuro, 2012, 4, AN20110030.	1.5	24
40	Generation of Primary Astrocyte Cultures Devoid of Contaminating Microglia. Methods in Molecular Biology, 2012, 814, 61-79.	0.4	24
41	Effects of charge and lipophilicity on mercurial-induced reduction of 45Ca2+ uptake in isolated nerve terminals of the rat. Toxicology and Applied Pharmacology, 1992, 113, 267-273.	1.3	23
42	Expression of the neurofibromatosis 1 (NF1) gene in reactive astrocytes in vitro. NeuroReport, 1995, 6, 1565-1568.	0.6	23
43	Specificity of Lambert-Eaton Myasthenic Syndrome immunoglobulin for nerve terminal calcium channels. Brain Research, 1992, 599, 324-332.	1.1	20
44	Differential Modulation of Prostaglandin H Synthase-2 by Nitric Oxide-Related Species in Intact Cellsâ€. Biochemistry, 2001, 40, 11533-11542.	1.2	20
45	Smad3â€dependent signaling underlies the TGFâ€Î²1â€mediated enhancement in astrocytic iNOS expression. Glia, 2010, 58, 1282-1291.	2.5	19
46	Interleukin-1Î ² Protects Neurons against Oxidant-Induced Injury via the Promotion of Astrocyte Glutathione Production. Antioxidants, 2018, 7, 100.	2.2	15
47	Enhanced release of synaptic glutamate underlies the potentiation of oxygen–glucose deprivation-induced neuronal injury after induction of NOS-2. Experimental Neurology, 2004, 190, 91-101.	2.0	14
48	Spontaneous Glutamatergic Synaptic Activity Regulates Constitutive COX-2 Expression in Neurons OPPOSING ROLES FOR THE TRANSCRIPTION FACTORS CREB (cAMP RESPONSE ELEMENT BINDING) PROTEIN AND Sp1 (STIMULATORY PROTEIN-1). Journal of Biological Chemistry, 2016, 291, 27279-27288.	1.6	14
49	Cytosolic phospholipase A ₂ α inhibition prevents neuronal NMDA receptorâ€stimulated arachidonic acid mobilization and prostaglandin production but not subsequent cell death. Journal of Neurochemistry, 2008, 106, 1828-1840.	2.1	13
50	TGF-β1 reduces the heterogeneity of astrocytic cyclooxygenase-2 and nitric oxide synthase-2 gene expression in a stimulus-independent manner. Prostaglandins and Other Lipid Mediators, 2008, 85, 115-124.	1.0	13
51	Interleukin 1β Regulation of the System xcâ~' Substrate-specific Subunit, xCT, in Primary Mouse Astrocytes Involves the RNA-binding Protein HuR. Journal of Biological Chemistry, 2016, 291, 1643-1651.	1.6	13
52	Serum and plasma from patients with Lambert-Eaton myasthenic syndrome reduce depolarization-dependent uptake of 45Ca2+ into rat cortical synaptosomes. Brain Research, 1991, 566, 320-324.	1.1	12
53	Disruption of synaptosomal calcium channel function by Lambert-Eaton myasthenic immunoglobulin is serum-dependent. Brain Research, 1992, 599, 317-323.	1.1	12
54	Mice deficient in L-12/15 lipoxygenase show increased vulnerability to 3-nitropropionic acid neurotoxicity. Neuroscience Letters, 2017, 643, 65-69.	1.0	10

SANDRA J HEWETT

#	Article	IF	CITATIONS
55	A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System x _c ^{â~'} Mediates Aglycemic Neuronal Cell Death. ASN Neuro, 2015, 7, 175909141561430.	1.5	9
56	Decreased epileptogenesis in mice lacking the System x _c ^{â^'} transporter occurs in association with a reduction in <scp>AMPA</scp> receptor subunit GluA1. Epilepsia Open, 2019, 4, 133-143.	1.3	9
57	Sexually dimorphic and brain region-specific transporter adaptations in system xcâ^ null mice. Neurochemistry International, 2020, 141, 104888.	1.9	7
58	Induction of Nitric Oxide Synthase-2 Expression and Measurement of Nitric Oxide Production in Enriched Primary Cortical Astrocyte Cultures. Methods in Molecular Biology, 2012, 814, 251-263.	0.4	6
59	Mice lacking Lâ€12/15â€lipoxygenase show increased mortality during kindling despite demonstrating resistance to epileptogenesis. Epilepsia Open, 2018, 3, 255-263.	1.3	6
60	Relationship between NMDA receptor expression and MPP+ toxicity in cultured dopaminergic cells. Journal of Neuroscience Research, 2003, 73, 811-817.	1.3	4
61	The Cystine/Glutamate Antiporter, System xc–, Contributes to Cortical Infarction After Moderate but Not Severe Focal Cerebral Ischemia in Mice. Frontiers in Cellular Neuroscience, 2022, 16, .	1.8	4
62	Hyperexcitability and brain morphological differences in mice lacking the cystine/glutamate antiporter, system x _c ^{â^'} . Journal of Neuroscience Research, 2021, 99, 3339-3353.	1.3	3
63	P2X7-dependent constitutive Interleukin-1β release from pyramidal neurons of the normal mouse hippocampus: Evidence for a role in maintenance of the innate seizure threshold. Neurobiology of Disease, 2022, 168, 105689.	2.1	3
64	Analysis and function of lipid mediators in the nervous system. Prostaglandins and Other Lipid Mediators, 2010, 91, 61-62.	1.0	0
65	The brain in flux: Genetic, physiologic, and therapeutic perspectives on transporters in the CNS. Neurochemistry International, 2021, 144, 104980.	1.9	0