Peter M Bach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/382571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A critical review of integrated urban water modelling – Urban drainage and beyond. Environmental Modelling and Software, 2014, 54, 88-107.	4.5	229
2	Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia. Renewable and Sustainable Energy Reviews, 2010, 14, 2683-2696.	16.4	135
3	A rapid urban flood inundation and damage assessment model. Journal of Hydrology, 2018, 564, 1085-1098.	5.4	124
4	Redefining the stormwater first flush phenomenon. Water Research, 2010, 44, 2487-2498.	11.3	115
5	Rainwater harvesting for urban flood management – An integrated modelling framework. Water Research, 2020, 171, 115372.	11.3	108
6	Framing water sensitive urban design as part of the urban form: A critical review of tools for best planning practice. Environmental Modelling and Software, 2017, 96, 265-282.	4.5	100
7	A planning-support tool for spatial suitability assessment of green urban stormwater infrastructure. Science of the Total Environment, 2019, 686, 856-868.	8.0	80
8	A Research Agenda for the Future of Urban Water Management: Exploring the Potential of Nongrid, Small-Grid, and Hybrid Solutions. Environmental Science & Technology, 2020, 54, 5312-5322.	10.0	73
9	Sewer asset management – state of the art and research needs. Urban Water Journal, 2019, 16, 662-675.	2.1	67
10	A Cellular Automata Fast Flood Evaluation (CAâ€ffé) Model. Water Resources Research, 2019, 55, 4936-4953.	4.2	62
11	Not all SuDS are created equal: Impact of different approaches on combined sewer overflows. Water Research, 2021, 191, 116780.	11.3	56
12	Modelling transitions in urban water systems. Water Research, 2017, 126, 501-514.	11.3	52
13	What drives the location choice for water sensitive infrastructure in Melbourne, Australia?. Landscape and Urban Planning, 2018, 175, 92-101.	7.5	48
14	Evaluating the reliability of stormwater treatment systems under various future climate conditions. Journal of Hydrology, 2019, 568, 57-66.	5.4	44
15	Reliability of Infrared Thermography in Detecting Leaks in Buried Water Reticulation Pipes. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 4210-4224.	4.9	39
16	A planning algorithm for quantifying decentralised water management opportunities in urban environments. Water Science and Technology, 2013, 68, 1857-1865.	2.5	38
17	Revisiting land use classification and spatial aggregation for modelling integrated urban water systems. Landscape and Urban Planning, 2015, 143, 43-55.	7.5	36
18	Quantifying the benefits of stormwater harvesting for pollution mitigation. Water Research, 2020, 171, 115395.	11.3	34

Peter M Bach

#	Article	IF	CITATIONS
19	Reconciling cities with nature: Identifying local Blue-Green Infrastructure interventions for regional biodiversity enhancement. Journal of Environmental Management, 2022, 316, 115254.	7.8	34
20	Modelling Interactions Between Lot-Scale Decentralised Water Infrastructure and Urban Form – a Case Study on Infiltration Systems. Water Resources Management, 2013, 27, 4845-4863.	3.9	32
21	Integrated modelling of stormwater treatment systems uptake. Water Research, 2018, 142, 301-312.	11.3	30
22	Understanding spatiotemporal variability of in-stream water quality in urban environments – A case study of Melbourne, Australia. Journal of Environmental Management, 2019, 246, 203-213.	7.8	30
23	Building effective Planning Support Systems for green urban water infrastructure—Practitioners' perceptions. Environmental Science and Policy, 2018, 89, 153-162.	4.9	29
24	A spatial planning-support system for generating decentralised urban stormwater management schemes. Science of the Total Environment, 2020, 726, 138282.	8.0	27
25	Modelling characteristics of the urban form to support water systems planning. Environmental Modelling and Software, 2018, 104, 249-269.	4.5	26
26	Stormwater pollutant runoff: A stochastic approach. Advances in Water Resources, 2014, 74, 148-155.	3.8	23
27	A rapid fine-scale approach to modelling urban bioclimatic conditions. Science of the Total Environment, 2021, 756, 143732.	8.0	22
28	Modelling cities and water infrastructure dynamics. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2013, 166, 301-308.	0.7	21
29	A Geospatial Database for Effective Mine Rehabilitation in Australia. Minerals (Basel, Switzerland), 2020, 10, 745.	2.0	21
30	Can we model the implementation of water sensitive urban design in evolving cities?. Water Science and Technology, 2015, 71, 149-156.	2.5	20
31	Impact of Hybrid Water Supply on the Centralised Water System. Water (Switzerland), 2017, 9, 855.	2.7	20
32	Designing and implementing a multi-core capable integrated urban drainage modelling Toolkit:Lessons from CityDrain3. Advances in Engineering Software, 2016, 100, 277-289.	3.8	15
33	Testing of new stormwater pollution build-up algorithms informed by a genetic programming approach. Journal of Environmental Management, 2019, 241, 12-21.	7.8	13
34	A Low-Cost Water Depth and Electrical Conductivity Sensor for Detecting Inputs into Urban Stormwater Networks. Sensors, 2021, 21, 3056.	3.8	13
35	Modelling a â€ business case' for blue-green infrastructure: lessons from the Water Sensitive Cities Toolkit. Blue-Green Systems, 2020, 2, 383-403.	2.0	12
36	Conceptual Urban Water Balance Model for Water Policy Testing: An Approach for Large Scale Investigation. Sustainability, 2018, 10, 716.	3.2	11

Peter M Bach

#	Article	IF	CITATIONS
37	Green Infrastructures for Urban Water System: Balance between Cities and Nature. Water (Switzerland), 2020, 12, 1456.	2.7	11
38	Stormwater management impacts of small urbanising towns: The necessity of investigating the â€~devil in the detail'. Science of the Total Environment, 2021, 757, 143835.	8.0	11
39	A Simplified Sanitary Sewer System Generator for Exploratory Modelling at City-Scale. Water Research, 2022, 209, 117903.	11.3	8
40	The development of a novel approach for assessment of the first flush in urban stormwater discharges. Water Science and Technology, 2010, 61, 2681-2688.	2.5	7
41	The multi-faceted nature of Blue-Green Systems coming to light. Blue-Green Systems, 2020, 2, 186-187.	2.0	7
42	Multi-scale stormwater harvesting to enhance urban resilience to climate change impacts and natural disasters. Blue-Green Systems, 2022, 4, 58-74.	2.0	6
43	Use and Utility: Exploring the Diversity and Design of Water Models at the Science-Policy Interface. Water (Switzerland), 2017, 9, 983.	2.7	5
44	Planning support systems for strategic implementation of nature-based solutions in the global south: Current role and future potential in Indonesia. Cities, 2022, 126, 103693.	5.6	4
45	Effects of Implementing Decentralized Water Supply Systems in Existing Centralized Systems. , 2017, , .		2
46	Modelling to Support the Planning of Sustainable Urban Water Systems. Green Energy and Technology, 2019, , 10-19.	0.6	1