Joseph R Ecker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/382557/publications.pdf

Version: 2024-02-01

246 319 101,231 284 143 288 citations g-index h-index papers 335 335 335 84510 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518, 317-330.	13.7	5,653
2	Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 2003, 301, 653-657.	6.0	4,667
3	Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462, 315-322.	13.7	4,063
4	Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis. Cell, 2008, 133, 523-536.	13.5	2,229
5	CTR1, a negative regulator of the ethylene response pathway in arabidopsis, encodes a member of the Raf family of protein kinases. Cell, 1993, 72, 427-441.	13.5	1,841
6	The NIH Roadmap Epigenomics Mapping Consortium. Nature Biotechnology, 2010, 28, 1045-1048.	9.4	1,705
7	Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods, 2016, 13, 1050-1054.	9.0	1,658
8	Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010, 465, 627-631.	13.7	1,651
9	Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis. Cell, 2006, 126, 1189-1201.	13.5	1,647
10	HIV-1 Integration in the Human Genome Favors Active Genes and Local Hotspots. Cell, 2002, 110, 521-529.	13.5	1,622
11	Global Epigenomic Reconfiguration During Mammalian Brain Development. Science, 2013, 341, 1237905.	6.0	1,609
12	Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity. Cell, 2014, 158, 1431-1443.	13.5	1,515
13	Ethylene Biosynthesis and Signaling Networks. Plant Cell, 2002, 14, S131-S151.	3.1	1,488
14	Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 2011, 471, 68-73.	13.7	1,442
15	Chromatin architecture reorganization during stem cell differentiation. Nature, 2015, 518, 331-336.	13.7	1,442
16	Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature, 2020, 583, 699-710.	13.7	1,252
17	EIN2, a Bifunctional Transducer of Ethylene and Stress Responses in Arabidopsis. Science, 1999, 284, 2148-2152.	6.0	1,172
18	1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell, 2016, 166, 481-491.	13.5	1,107

#	Article	IF	CITATIONS
19	Assignment of 30 Microsatellite Loci to the Linkage Map of Arabidopsis. Genomics, 1994, 19, 137-144.	1.3	1,105
20	Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 2002, 7, 301-308.	4.3	1,080
21	Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell, 2016, 165, 1280-1292.	13.5	1,078
22	Functional Genomic Analysis of the AUXIN RESPONSE FACTOR Gene Family Members in Arabidopsis thaliana: Unique and Overlapping Functions of ARF7 and ARF19 Â. Plant Cell, 2005, 17, 444-463.	3.1	933
23	Activation of the Ethylene Gas Response Pathway in Arabidopsis by the Nuclear Protein ETHYLENE-INSENSITIVE3 and Related Proteins. Cell, 1997, 89, 1133-1144.	13.5	928
24	Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4459-4464.	3.3	878
25	Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2183-91.	3.3	878
26	Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome. Science, 2003, 302, 842-846.	6.0	853
27	Arabidopsis RIN4 Is a Target of the Type III Virulence Effector AvrRpt2 and Modulates RPS2-Mediated Resistance. Cell, 2003, 112, 379-389.	13.5	852
28	Evidence for Network Evolution in an <i>Arabidopsis</i> Interactome Map. Science, 2011, 333, 601-607.	6.0	838
29	The ethylene signaling pathway: new insights. Current Opinion in Plant Biology, 2004, 7, 40-49.	3.5	834
30	Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences. PLoS Biology, 2004, 2, e234.	2.6	830
31	Plant Responses to Ethylene Gas Are Mediated by SCFEBF1/EBF2-Dependent Proteolysis of EIN3 Transcription Factor. Cell, 2003, 115, 667-677.	13.5	827
32	Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science, 2011, 333, 596-601.	6.0	776
33	Distinct Epigenomic Landscapes of Pluripotent and Lineage-Committed Human Cells. Cell Stem Cell, 2010, 6, 479-491.	5.2	747
34	Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 2011, 473, 394-397.	13.7	738
35	Common Sequence Polymorphisms Shaping Genetic Diversity in <i>Arabidopsis thaliana</i> . Science, 2007, 317, 338-342.	6.0	689
36	Epigenomic Analysis of Multilineage Differentiation of Human Embryonic Stem Cells. Cell, 2013, 153, 1134-1148.	13.5	689

#	Article	IF	CITATIONS
37	Class III Homeodomain-Leucine Zipper Gene Family Members Have Overlapping, Antagonistic, and Distinct Roles in Arabidopsis Development. Plant Cell, 2005, 17, 61-76.	3.1	650
38	Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nature Biotechnology, 2010, 28, 1097-1105.	9.4	647
39	Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain. Neuron, 2015, 86, 1369-1384.	3.8	640
40	Transgenerational Epigenetic Instability Is a Source of Novel Methylation Variants. Science, 2011, 334, 369-373.	6.0	635
41	Type-A Arabidopsis Response Regulators Are Partially Redundant Negative Regulators of Cytokinin Signaling[W]. Plant Cell, 2004, 16, 658-671.	3.1	631
42	Localization of Iron in Arabidopsis Seed Requires the Vacuolar Membrane Transporter VIT1. Science, 2006, 314, 1295-1298.	6.0	614
43	Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development (Cambridge), 2005, 132, 4107-4118.	1.2	608
44	Human body epigenome maps reveal noncanonical DNA methylation variation. Nature, 2015, 523, 212-216.	13.7	605
45	Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes and Development, 2002, 16, 3100-3112.	2.7	598
46	Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions. Cell, 2016, 166, 492-505.	13.5	594
47	A role for LEDGF/p75 in targeting HIV DNA integration. Nature Medicine, 2005, 11, 1287-1289.	15.2	583
48	EIN4 and ERS2 Are Members of the Putative Ethylene Receptor Gene Family in Arabidopsis. Plant Cell, 1998, 10, 1321-1332.	3.1	546
49	Patterns of population epigenomic diversity. Nature, 2013, 495, 193-198.	13.7	543
50	Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature, 2003, 421, 79-83.	13.7	534
51	CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca2+- Permeable Channels and Stomatal Closure. PLoS Biology, 2006, 4, e327.	2.6	523
52	DELLA Proteins and Gibberellin-Regulated Seed Germination and Floral Development in Arabidopsis. Plant Physiology, 2004, 135, 1008-1019.	2.3	521
53	ABA-Activated SnRK2 Protein Kinase is Required for Dehydration Stress Signaling in Arabidopsis. Plant and Cell Physiology, 2002, 43, 1473-1483.	1.5	520
54	CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3985-3990.	3.3	519

#	Article	IF	CITATIONS
55	Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genetics, 2007, 39, 1151-1155.	9.4	497
56	THE ETHYLENE GAS SIGNAL TRANSDUCTION PATHWAY: A Molecular Perspective. Annual Review of Genetics, 1998, 32, 227-254.	3.2	490
57	GUN4, a Regulator of Chlorophyll Synthesis and Intracellular Signaling. Science, 2003, 299, 902-906.	6.0	478
58	Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Research, 2012, 22, 246-258.	2.4	476
59	Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochemical Journal, 2000, 347, 749-755.	1.7	474
60	Dynamic DNA methylation: In the right place at the right time. Science, 2018, 361, 1336-1340.	6.0	469
61	Processing and Subcellular Trafficking of ER-Tethered EIN2 Control Response to Ethylene Gas. Science, 2012, 338, 390-393.	6.0	461
62	Linking photoreceptor excitation to changes in plant architecture. Genes and Development, 2012, 26, 785-790.	2.7	460
63	<i>Arabidopsis</i> Basic Helix-Loop-Helix Transcription Factors MYC2, MYC3, and MYC4 Regulate Glucosinolate Biosynthesis, Insect Performance, and Feeding Behavior Â. Plant Cell, 2013, 25, 3117-3132.	3.1	453
64	Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature, 2001, 410, 952-954.	13.7	448
65	Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell, 2016, 164, 233-245.	13.5	445
66	Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science, 2017, 357, 600-604.	6.0	445
67	HOOKLESS1, an Ethylene Response Gene, Is Required for Differential Cell Elongation in the Arabidopsis Hypocotyl. Cell, 1996, 85, 183-194.	13.5	433
68	Ethylene-Induced Stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 That Requires EIN2 in <i>Arabidopsis</i> \hat{A} \hat{A} . Plant Cell, 2010, 22, 2384-2401.	3.1	432
69	NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant Journal, 2005, 43, 118-130.	2.8	415
70	Molecular Criteria for Defining the Naive Human Pluripotent State. Cell Stem Cell, 2016, 19, 502-515.	5.2	415
71	Enhanced Fitness Conferred by Naturally Occurring Variation in the Circadian Clock. Science, 2003, 302, 1049-1053.	6.0	411
72	Integration of omic networks in a developmental atlas of maize. Science, 2016, 353, 814-818.	6.0	411

#	Article	IF	Citations
73	Multiple Type-B Response Regulators Mediate Cytokinin Signal Transduction in Arabidopsis Â. Plant Cell, 2005, 17, 3007-3018.	3.1	397
74	A Link between RNA Metabolism and Silencing Affecting Arabidopsis Development. Developmental Cell, 2008, 14, 854-866.	3.1	394
75	A transcription factor hierarchy defines an environmental stress response network. Science, 2016, 354, .	6.0	394
76	The Arabidopsis Histidine Phosphotransfer Proteins Are Redundant Positive Regulators of Cytokinin Signaling. Plant Cell, 2006, 18, 3073-3087.	3.1	392
77	RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson Disease–Related Copper Transporter, Is Required for Ethylene Signaling in Arabidopsis. Cell, 1999, 97, 383-393.	13.5	385
78	LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10387-10392.	3.3	381
79	Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2992-2997.	3.3	380
80	Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. ELife, 2013, 2, e00675.	2.8	379
81	Applications of DNA tiling arrays for whole-genome analysis. Genomics, 2005, 85, 1-15.	1,3	376
82	Convergent Targeting of a Common Host Protein-Network by Pathogen Effectors from Three Kingdoms of Life. Cell Host and Microbe, 2014, 16, 364-375.	5.1	367
83	Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature, 2004, 428, 945-950.	13.7	362
84	Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 2021, 598, 111-119.	13.7	361
85	Comparison of the transcriptional landscapes between human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17224-17229.	3.3	337
86	The <i>Arabidopsis</i> Phytochrome-Interacting Factor PIF7, Together with PIF3 and PIF4, Regulates Responses to Prolonged Red Light by Modulating phyB Levels. Plant Cell, 2008, 20, 337-352.	3.1	334
87	Functional Genomic Analysis of the AUXIN/INDOLE-3-ACETIC ACID Gene Family Members in Arabidopsis thaliana $\hat{A}[W]$. Plant Cell, 2005, 17, 3282-3300.	3.1	331
88	Mapping genome-wide transcription-factor binding sites using DAP-seq. Nature Protocols, 2017, 12, 1659-1672.	5.5	330
89	Finding the fifth base: Genome-wide sequencing of cytosine methylation. Genome Research, 2009, 19, 959-966.	2.4	323
90	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	13.7	316

#	Article	IF	Citations
91	The Î ² -Subunit of the Arabidopsis G Protein Negatively Regulates Auxin-Induced Cell Division and Affects Multiple Developmental Processes[W]. Plant Cell, 2003, 15, 393-409.	3.1	310
92	Retroviral DNA Integration: Viral and Cellular Determinants of Target-Site Selection. PLoS Pathogens, 2006, 2, e60.	2.1	310
93	Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature, 2014, 511, 177-183.	13.7	307
94	Genome-Wide High-Resolution Mapping of Exosome Substrates Reveals Hidden Features in the Arabidopsis Transcriptome. Cell, 2007, 131, 1340-1353.	13.5	298
95	Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in <i>Arabidopsis</i> . Genes and Development, 2009, 23, 512-521.	2.7	297
96	Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain. Cell Reports, 2016, 17, 3369-3384.	2.9	296
97	The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant Journal, 2006, 45, 225-236.	2.8	290
98	Convergence of Signaling Pathways in the Control of Differential Cell Growth in Arabidopsis. Developmental Cell, 2004, 7, 193-204.	3.1	289
99	Literature-curated protein interaction datasets. Nature Methods, 2009, 6, 39-46.	9.0	288
100	RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nature Chemical Biology, 2011, 7, 779-786.	3.9	286
101	Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. ELife, 2015, 4, .	2.8	285
102	â€~Leveling' the playing field for analyses of single-base resolution DNA methylomes. Trends in Genetics, 2012, 28, 583-585.	2.9	276
103	The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16091-16098.	3.3	275
104	A Combinatorial Interplay Among the 1-Aminocyclopropane-1-Carboxylate Isoforms Regulates Ethylene Biosynthesis in <i>Arabidopsis thaliana</i> . Genetics, 2009, 183, 979-1003.	1.2	263
105	Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Current Opinion in Plant Biology, 2009, 12, 107-118.	3.5	261
106	Three Redundant Brassinosteroid Early Response Genes Encode Putative bHLH Transcription Factors Required for Normal Growth. Genetics, 2002, 162, 1445-1456.	1.2	259
107	An atlas of dynamic chromatin landscapes in mouse fetal development. Nature, 2020, 583, 744-751.	13.7	257
108	Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nature Communications, 2021, 12, 1337.	5.8	253

#	Article	IF	Citations
109	MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nature Protocols, 2015, 10, 475-483.	5.5	250
110	ENCODE explained. Nature, 2012, 489, 52-54.	13.7	245
111	Prepublication data sharing. Nature, 2009, 461, 168-170.	13.7	243
112	High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nature Communications, 2018, 9, 541.	5.8	243
113	The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas. Neuron, 2017, 96, 542-557.	3.8	235
114	Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature, 2000, 408, 816-820.	13.7	234
115	Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nature Reviews Genetics, 2006, 7, 524-536.	7.7	230
116	Circadian Oscillations of Protein-Coding and Regulatory RNAs in a Highly Dynamic Mammalian Liver Epigenome. Cell Metabolism, 2012, 16, 833-845.	7.2	230
117	Genome-wide identification of CCA1 targets uncovers an expanded clock network in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4802-10.	3.3	230
118	Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Research, 2013, 23, 1663-1674.	2.4	227
119	Direct transcriptional control of the <i>Arabidopsis</i> immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14502-14507.	3.3	218
120	Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biology, 2017, 18, 171.	3.8	218
121	An alternative pluripotent state confers interspecies chimaeric competency. Nature, 2015, 521, 316-321.	13.7	215
122	Non-CG Methylation in the Human Genome. Annual Review of Genomics and Human Genetics, 2015, 16, 55-77.	2.5	210
123	Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nature Genetics, 2016, 48, 417-426.	9.4	210
124	Potential Sites of Bioactive Gibberellin Production during Reproductive Growth in <i>Arabidopsis</i> Â. Plant Cell, 2008, 20, 320-336.	3.1	209
125	Forward and Reverse Genetics through Derivation of Haploid Mouse Embryonic Stem Cells. Cell Stem Cell, 2011, 9, 563-574.	5.2	208
126	De-Etiolated 1 and Damaged DNA Binding Protein 1 Interact to Regulate Arabidopsis Photomorphogenesis. Current Biology, 2002, 12, 1462-1472.	1.8	203

#	Article	IF	CITATIONS
127	Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature, 2015, 518, 350-354.	13.7	201
128	Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nature Methods, 2019, 16, 999-1006.	9.0	200
129	An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 2001, 410, 487-490.	13.7	199
130	Mobile small RNAs regulate genome-wide DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E801-10.	3.3	192
131	Isolation and Characterization of phyC Mutants in Arabidopsis Reveals Complex Crosstalk between Phytochrome Signaling Pathways. Plant Cell, 2003, 15, 1962-1980.	3.1	190
132	Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. ELife, 2018, 7, .	2.8	180
133	The <i>Arabidopsis</i> 14-3-3 Protein RARE COLD INDUCIBLE 1A Links Low-Temperature Response and Ethylene Biosynthesis to Regulate Freezing Tolerance and Cold Acclimation Â. Plant Cell, 2014, 26, 3326-3342.	3.1	178
134	PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10134-10139.	3. 3	176
135	Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2460-2465.	3.3	174
136	Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant Journal, 2010, 61, 928-940.	2.8	171
137	Mutations in the Ca2+/H+ Transporter CAX1 Increase CBF/DREB1 Expression and the Cold-Acclimation Response in Arabidopsis. Plant Cell, 2003, 15, 2940-2951.	3.1	170
138	Ethylene signaling: from mutants to molecules. Current Opinion in Plant Biology, 2000, 3, 353-360.	3 . 5	166
139	A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature, 2021, 598, 103-110.	13.7	166
140	A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors. Cell Reports, 2014, 8, 622-632.	2.9	164
141	ETHYLENE-INSENSITIVE5 encodes a 5'->3' exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13286-13293.	3.3	163
142	GCR1 Can Act Independently of Heterotrimeric G-Protein in Response to Brassinosteroids and Gibberellins in Arabidopsis Seed Germination. Plant Physiology, 2004, 135, 907-915.	2.3	160
143	Unique cell-type-specific patterns of DNA methylation in the root meristem. Nature Plants, 2016, 2, 16058.	4.7	159
144	Genome-wide patterns of single-feature polymorphism in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12057-12062.	3.3	157

#	Article	IF	CITATIONS
145	CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping. Nature Methods, 2017, 14, 819-825.	9.0	157
146	Arabidopsis Homologs of a c-Jun Coactivator Are Present Both in Monomeric Form and in the COP9 Complex, and Their Abundance Is Differentially Affected by the Pleiotropic cop/det/fus Mutations. Plant Cell, 1998, 10, 1779-1790.	3.1	156
147	A complete BAC-based physical map of the Arabidopsis thaliana genome. Nature Genetics, 1999, 22, 271-275.	9.4	155
148	An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. Scientific Reports, 2016, 6, 28941.	1.6	155
149	Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications, 2019, 10, 4021.	5.8	155
150	Regulation of flowering time in Arabidopsis by K homology domain proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12759-12764.	3.3	150
151	An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant Journal, 2004, 41, 304-318.	2.8	148
152	Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biology, 2005, 5, 14.	1.6	148
153	Phytochrome-Specific Type 5 Phosphatase Controls Light Signal Flux by Enhancing Phytochrome Stability and Affinity for a Signal Transducer. Cell, 2005, 120, 395-406.	13.5	148
154	Plant Stress Tolerance Requires Auxin-Sensitive Aux/IAA Transcriptional Repressors. Current Biology, 2017, 27, 437-444.	1.8	148
155	The POLARIS Peptide of Arabidopsis Regulates Auxin Transport and Root Growth via Effects on Ethylene Signaling. Plant Cell, 2006, 18, 3058-3072.	3.1	146
156	Sigma factorâ€mediated plastid retrograde signals control nuclear gene expression. Plant Journal, 2013, 73, 1-13.	2.8	145
157	Integrated multi-omics framework of the plant response to jasmonic acid. Nature Plants, 2020, 6, 290-302.	4.7	145
158	Short-Term Growth Responses to Ethylene in Arabidopsis Seedlings Are EIN3/EIL1 Independent. Plant Physiology, 2004, 136, 2921-2927.	2.3	140
159	The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease. Journal of Cell Biology, 2007, 178, 477-488.	2.3	140
160	FRIGIDA-Independent Variation in Flowering Time of Natural Arabidopsis thaliana Accessions. Genetics, 2005, 170, 1197-1207.	1.2	138
161	Robust single-cell DNA methylome profiling with snmC-seq2. Nature Communications, 2018, 9, 3824.	5.8	138
162	Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the <i>Arabidopsis</i> epigenome. Genes and Development, 2012, 26, 1825-1836.	2.7	137

#	Article	IF	CITATIONS
163	The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection. Cell Stem Cell, 2014, 15, 295-309.	5.2	137
164	DNA methylation atlas of the mouse brain at single-cell resolution. Nature, 2021, 598, 120-128.	13.7	135
165	A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nature Communications, 2018, 9, 1604.	5.8	130
166	RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis. Journal of Experimental Botany, 2006, 57, 2697-2708.	2.4	128
167	The Central Role of PhEIN2 in Ethylene Responses throughout Plant Development in Petunia. Plant Physiology, 2004, 136, 2900-2912.	2.3	126
168	Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochemical Journal, 2000, 347, 749.	1.7	125
169	EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nature Communications, 2016, 7, 13018.	5 . 8	125
170	A Reevaluation of the Role of the Heterotrimeric G Protein in Coupling Light Responses in Arabidopsis. Plant Physiology, 2003, 131, 1623-1627.	2.3	124
171	Two Plant Viral Suppressors of Silencing Require the Ethylene-Inducible Host Transcription Factor RAV2 to Block RNA Silencing. PLoS Pathogens, 2010, 6, e1000729.	2.1	124
172	<scp>JAZ</scp> 2 controls stomata dynamics during bacterial invasion. New Phytologist, 2017, 213, 1378-1392.	3.5	124
173	Perspectives on ENCODE. Nature, 2020, 583, 693-698.	13.7	123
174	Small RNA-mediated chromatin silencing directed to the 3' region of the Arabidopsis gene encoding the developmental regulator, FLC. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3633-3638.	3.3	116
175	Flagellin Is Not a Major Defense Elicitor in Ralstonia solanacearum Cells or Extracts Applied to Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2004, 17, 696-706.	1.4	111
176	An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nature Protocols, 2007, 2, 2910-2917.	5. 5	111
177	Downregulation of ClpR2 Leads to Reduced Accumulation of the ClpPRS Protease Complex and Defects in Chloroplast Biogenesis in Arabidopsis. Plant Cell, 2006, 18, 1704-1721.	3.1	110
178	ERRs Mediate a Metabolic Switch Required for Somatic Cell Reprogramming to Pluripotency. Cell Stem Cell, 2015, 16, 547-555.	5.2	109
179	The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS Genetics, 2019, 15, e1007819.	1.5	109
180	Regulation of membrane trafficking and organ separation by the NEVERSHED ARF-GAP protein. Development (Cambridge), 2009, 136, 1909-1918.	1.2	106

#	Article	IF	Citations
181	Epigenomic landscapes of retinal rods and cones. ELife, 2016, 5, e11613.	2.8	106
182	Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biology, 2009, 10, R17.	13.9	103
183	Robust single-cell Hi-C clustering by convolution- and random-walkâ€"based imputation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14011-14018.	3.3	101
184	Release Factor One Is Nonessential in <i>Escherichia coli</i> . ACS Chemical Biology, 2012, 7, 1337-1344.	1.6	100
185	Development of large DNA methods for plants: molecular cloning of large segments of Arabidopsisand carrot DNA into yeast. Nucleic Acids Research, 1988, 16, 11091-11105.	6.5	99
186	Chimeric Activators and Repressors Define HY5 Activity and Reveal a Light-Regulated Feedback Mechanism. Plant Cell, 2020, 32, 967-983.	3.1	96
187	A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23345-23356.	3.3	95
188	An atlas of gene regulatory elements in adult mouse cerebrum. Nature, 2021, 598, 129-136.	13.7	95
189	Higher plants possess two different types of ATX1-like copper chaperones. Biochemical and Biophysical Research Communications, 2007, 354, 385-390.	1.0	92
190	A Family of Bacterial Cysteine Protease Type III Effectors Utilizes Acylation-dependent and -independent Strategies to Localize to Plasma Membranes. Journal of Biological Chemistry, 2009, 284, 15867-15879.	1.6	92
191	Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends in Plant Science, 2012, 17, 149-154.	4.3	92
192	A User's Guide to the Arabidopsis T-DNA Insertion Mutant Collections. Methods in Molecular Biology, 2015, 1284, 323-342.	0.4	91
193	A Homolog of Prokaryotic Thiol Disulfide Transporter CcdA Is Required for the Assembly of the Cytochrome bf Complex in Arabidopsis Chloroplasts. Journal of Biological Chemistry, 2004, 279, 32474-32482.	1.6	90
194	The <i>Arabidopsis</i> Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram. G3: Genes, Genomes, Genetics, 2016, 6, 1383-1390.	0.8	89
195	Extraction of Distinct Neuronal Cell Types from within a Genetically Continuous Population. Neuron, 2020, 107, 274-282.e6.	3.8	88
196	Ethylene gas: perception, signaling and response. Current Opinion in Plant Biology, 1998, 1, 393-398.	3.5	85
197	Rapid Array Mapping of Circadian Clock and Developmental Mutations in Arabidopsis. Plant Physiology, 2005, 138, 990-997.	2.3	85
198	NPSN11 Is a Cell Plate-Associated SNARE Protein That Interacts with the Syntaxin KNOLLE. Plant Physiology, 2002, 129, 530-539.	2.3	84

#	Article	IF	Citations
199	Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature, 2020, 583, 752-759.	13.7	84
200	Light-Response Quantitative Trait Loci Identified with Composite Interval and eXtreme Array Mapping in Arabidopsis thalianaSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY394847 and AY466496 Genetics, 2004, 167, 907-917.	1.2	83
201	HIV Integration Site Selection: Targeting in Macrophages and the Effects of Different Routes of Viral Entry. Molecular Therapy, 2006, 14, 218-225.	3.7	83
202	Genome-wide DNA methylation patterns in LSH mutant reveals de-repression of repeat elements and redundant epigenetic silencing pathways. Genome Research, 2014, 24, 1613-1623.	2.4	83
203	Functional Characterization of Type-B Response Regulators in the Arabidopsis Cytokinin Response Â. Plant Physiology, 2013, 162, 212-224.	2.3	82
204	Ethylene gas: it's not just for ripening any more!. Trends in Genetics, 1993, 9, 356-362.	2.9	80
205	The DNA methylome. FEBS Letters, 2011, 585, 1994-2000.	1.3	80
206	Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1633-E1640.	3.3	78
207	Functional Human Oocytes Generated by Transfer of Polar Body Genomes. Cell Stem Cell, 2017, 20, 112-119.	5.2	76
208	Divergent cytosine DNA methylation patterns in singleâ€eell, soybean root hairs. New Phytologist, 2017, 214, 808-819.	3. 5	75
209	Genomic Decoding of Neuronal Depolarization by Stimulus-Specific NPAS4 Heterodimers. Cell, 2019, 179, 373-391.e27.	13.5	73
210	Unexpected Diversity of Chloroplast Noncoding RNAs as Revealed by Deep Sequencing of the <i>Arabidopsis</i> Transcriptome. G3: Genes, Genomes, Genetics, 2011, 1, 559-570.	0.8	71
211	PFGE and YAC analysis of the Arabidopsis genome. Methods, 1990, 1, 186-194.	1.9	69
212	PLANT GENOMICS: The Third Wave. Annual Review of Genomics and Human Genetics, 2004, 5, 443-477.	2.5	68
213	methylPipe and compEpiTools: a suite of R packages for the integrative analysis of epigenomics data. BMC Bioinformatics, 2015, 16, 313.	1.2	68
214	Common alleles of CMT2 and NRPE1 are major determinants of CHH methylation variation in Arabidopsis thaliana. PLoS Genetics, 2019, 15, e1008492.	1.5	68
215	A Growth Regulatory Loop That Provides Homeostasis to Phytochrome A Signaling[W]. Plant Cell, 2003, 15, 2966-2978.	3.1	67
216	The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. Plant Molecular Biology, 2006, 62, 427-437.	2.0	67

#	Article	IF	Citations
217	Mapping transcription factor interactome networks using HaloTag protein arrays. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4238-47.	3.3	67
218	A WD40 Domain Cyclophilin Interacts with Histone H3 and Functions in Gene Repression and Organogenesis in Arabidopsis. Plant Cell, 2007, 19, 2403-2416.	3.1	66
219	Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. ELife, 2019, 8, .	2.8	64
220	Dynamic and rapid changes in the transcriptome and epigenome during germination and in developing rice (<i>Oryza sativa</i>) coleoptiles under anoxia and reâ€oxygenation. Plant Journal, 2017, 89, 805-824.	2.8	63
221	The emergence of the brain non-CpG methylation system in vertebrates. Nature Ecology and Evolution, 2021, 5, 369-378.	3.4	63
222	Mapping the genome landscape using tiling array technology. Current Opinion in Plant Biology, 2007, 10, 534-542.	3.5	61
223	Reentry of the Ethylene MPK6 Module. Plant Cell, 2004, 16, 3169-3173.	3.1	58
224	Activity-dependent modulation of synapse-regulating genes in astrocytes. ELife, 2021, 10, .	2.8	58
225	Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genomics, 2022, 2, 100107.	3.0	58
226	Integration Site Selection by HIV-Based Vectors in Dividing and Growth-Arrested IMR-90 Lung Fibroblasts. Molecular Therapy, 2006, 13, 366-373.	3.7	57
227	Genome and time-of-day transcriptome of <i>Wolffia australiana</i> link morphological minimization with gene loss and less growth control. Genome Research, 2021, 31, 225-238.	2.4	56
228	PHYTOCHROME-INTERACTING FACTORs trigger environmentally responsive chromatin dynamics in plants. Nature Genetics, 2021, 53, 955-961.	9.4	54
229	Iterative single-cell multi-omic integration using online learning. Nature Biotechnology, 2021, 39, 1000-1007.	9.4	53
230	Surveillance of 3′ Noncoding Transcripts Requires FIERY1 and XRN3 in <i>Arabidopsis</i> . G3: Genes, Genomes, Genetics, 2012, 2, 487-498.	0.8	47
231	The JAâ€pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. Plant Journal, 2020, 102, 138-152.	2.8	47
232	Epigenomic diversity of cortical projection neurons in the mouse brain. Nature, 2021, 598, 167-173.	13.7	47
233	Sequencing and functional validation of the <scp>JGI </scp> <i>Brachypodium distachyon</i> Tâ€ <scp>DNA</scp> collection. Plant Journal, 2017, 91, 361-370.	2.8	46
234	OGT binds a conserved C-terminal domain of TET1 to regulate TET1 activity and function in development. ELife, 2018, 7, .	2.8	46

#	Article	IF	CITATIONS
235	Allele-specific non-CG DNA methylation marks domains of active chromatin in female mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2882-E2890.	3.3	45
236	EIN4 and ERS2 Are Members of the Putative Ethylene Receptor Gene Family in Arabidopsis. Plant Cell, 1998, 10, 1321.	3.1	44
237	Utilizing tiling microarrays for wholeâ€genome analysis in plants. Plant Journal, 2008, 53, 636-644.	2.8	44
238	Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. ELife, 2020, 9 , .	2.8	44
239	CG hypomethylation in Lsh-/- mouse embryonic fibroblasts is associated with de novo H3K4me1 formation and altered cellular plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5890-5895.	3.3	39
240	The Ethylene Pathway: A Paradigm for Plant Hormone Signaling and Interaction. Science Signaling, 2001, 2001, rel-rel.	1.6	38
241	Single nucleus multi-omics regulatory landscape of the murine pituitary. Nature Communications, 2021, 12, 2677.	5.8	38
242	Ethylene signaling in Arabidopsis: Events from the membrane to the nucleus. Plant Physiology and Biochemistry, 1998, 36, 103-113.	2.8	31
243	A Proposal Regarding Best Practices for Validating the Identity of Genetic Stocks and the Effects of Genetic Variants. Plant Cell, 2016, 28, 606-609.	3.1	31
244	Leaf cell-specific and single-cell transcriptional profiling reveals a role for the palisade layer in UV light protection. Plant Cell, 2022, 34, 3261-3279.	3.1	31
245	Diversity and dynamics of DNA methylation: epigenomic resources and tools for crop breeding. Breeding Science, 2019, 69, 191-204.	0.9	30
246	Epigenetic silencing of a multifunctional plant stress regulator. ELife, 2019, 8, .	2.8	28
247	DNA Topoisomerase $1\hat{l}\pm$ Promotes Transcriptional Silencing of Transposable Elements through DNA Methylation and Histone Lysine 9 Dimethylation in Arabidopsis. PLoS Genetics, 2014, 10, e1004446.	1.5	26
248	Epigenomic programming contributes to the genomic drift evolution of the F-Box protein superfamily in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16927-16932.	3.3	25
249	Profiling of Transcription Factor Binding Events by Chromatin Immunoprecipitation Sequencing (ChIPâ€seq). Current Protocols in Plant Biology, 2016, 1, 293-306.	2.8	24
250	A Blueprint for an International Cancer Epigenome Consortium. A Report from the AACR Cancer Epigenome Task Force. Cancer Research, 2012, 72, 6319-6324.	0.4	22
251	Genetic and physical linkage of the Arabidopsis genome: Methods for anchoring Yeast Artificial Chromosomes., 1992,, 144-169.		22
252	Detection of allele-specific methylation through a generalized heterogeneous epigenome model. Bioinformatics, 2012, 28, i163-i171.	1.8	21

#	Article	IF	Citations
253	Epigenetic trigger for tomato ripening. Nature Biotechnology, 2013, 31, 119-120.	9.4	21
254	Variation in the Structure of Varicella-Zoster Virus DNA. Intervirology, 1984, 21, 25-37.	1.2	20
255	BRI-ghtening the Pathway to Steroid Hormone Signaling Events in Plants. Cell, 1997, 90, 825-827.	13.5	19
256	Challenges and recommendations for epigenomics in precision health. Nature Biotechnology, 2017, 35, 1128-1132.	9.4	19
257	Genes blossom from a weed. Nature, 1998, 391, 438-439.	13.7	18
258	Exploiting the Triple Response of Arabidopsis to Identify Ethylene-Related Mutants. Plant Cell, 1990, 2, 513.	3.1	16
259	A massively parallel barcoded sequencing pipeline enables generation of the first ORFeome and interactome map for rice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11836-11842.	3.3	16
260	STAR: an integrated solution to management and visualization of sequencing data. Bioinformatics, 2013, 29, 3204-3210.	1.8	13
261	Piecing together <i>cis</i> à€regulatory networks: insights from epigenomics studies in plants. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1411.	6.6	13
262	Analysis of interruptions in the phosphodiester backbone of herpes simplex virus DNA. Virology, 1981, 110, 213-216.	1.1	12
263	Mutant analysis as an experimental approach towards understanding plant hormone action. Seminars in Developmental Biology, 1993, 4, 3-13.	1.3	12
264	Systematic mapping of occluded genes by cell fusion reveals prevalence and stability of <i>cis</i> mediated silencing in somatic cells. Genome Research, 2014, 24, 267-280.	2.4	12
265	A plant-specific syntaxin-6 protein contributes to the intracytoplasmic route for the begomovirus CabLCV. Plant Physiology, 2021, 187, 158-173.	2.3	12
266	Divergent perspectives on GM food. Nature Biotechnology, 2002, 20, 1195-1196.	9.4	11
267	Genotypic variation of gene expression during the soybean innate immunity response. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, S27-S30.	0.4	11
268	Exceptional epigenetics in the brain. Science, 2015, 348, 1094-1095.	6.0	11
269	The role of ATXR6 expression in modulating genome stability and transposable element repression in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
270	Chromosomal mapping of the ubiquitin gene family inSaccharomyces cerevisiaeby pulsed field gel electrophoresis. Nucleic Acids Research, 1989, 17, 3611-3612.	6.5	10

#	Article	IF	CITATIONS
271	Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and increases the repressive histone modification H3K27me3. ELife, 0, 11 , .	2.8	10
272	Zeroing in on DNA methylomes with no BS. Nature Methods, 2010, 7, 435-437.	9.0	8
273	Profiling Interactome Networks with the HaloTagâ€NAPPA <i>In Situ</i> Protein Array. Current Protocols in Plant Biology, 2018, 3, e20071.	2.8	8
274	The biology of time: dynamic responses of cell types to developmental, circadian, and environmental cues. Plant Journal, 2021 , , .	2.8	8
275	Response to Perspective. Plant Signaling and Behavior, 2013, 8, e25037.	1.2	5
276	Ethylene Responses in Seedling Growth and Development. , 2010, , 358-376.		2
277	CrY2H-seq interactome screening. Protocol Exchange, 0, , .	0.3	1
278	Cell signalling and gene regulation: piecing the puzzle together. Current Opinion in Plant Biology, 1998, 1, 375-377.	3.5	0
279	The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease. Journal of Experimental Medicine, 2007, 204, i22-i22.	4.2	О
280	The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease. FASEB Journal, 2008, 22, 102.2.	0.2	0
281	Title is missing!. , 2019, 15, e1008492.		О
282	Title is missing!. , 2019, 15, e1008492.		0
283	Title is missing!. , 2019, 15, e1008492.		0
284	Title is missing!. , 2019, 15, e1008492.		0