Hugo G Messias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3825305/publications.pdf

Version: 2024-02-01

47 papers 2,020 citations

279798 23 h-index 233421 45 g-index

47 all docs

47 docs citations

47 times ranked

2872 citing authors

#	Article	IF	CITATIONS
1	EMU: Evolutionary Map of the Universe. Publications of the Astronomical Society of Australia, 2011, 28, 215-248.	3.4	312
2	DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING (i>XMM AND (i>CHANDRA COSMOS SAMPLES. Astrophysical Journal, 2011, 742, 61.	4.5	205
3	GOODS-ALMA: 1.1 mm galaxy survey. Astronomy and Astrophysics, 2018, 620, A152.	5.1	147
4	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	8.3	142
5	The Spitzer Extragalactic Representative Volume Survey (SERVS): Survey Deï¬nition and Goals*. Publications of the Astronomical Society of the Pacific, 2012, 124, 714-736.	3.1	135
6	HOW DO STAR-FORMING GALAXIES AT <i>z</i> > 3 ASSEMBLE THEIR MASSES?. Astrophysical Journal, 2012, 752, 66.	4.5	122
7	WITNESSING THE BIRTH OF THE RED SEQUENCE: ALMA HIGH-RESOLUTION IMAGING OF AND DUST IN TWO INTERACTING ULTRA-RED STARBURSTS AT $z=4.425$. Astrophysical Journal, 2016, 827, 34.	4.5	75
8	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	8.3	67
9	CLUSTERING PROPERTIES OF B <i>>z</i> K-SELECTED GALAXIES IN GOODS-N: ENVIRONMENTAL QUENCHING AND TRIGGERING OF STAR FORMATION AT <i>z</i> e^1/4 2. Astrophysical Journal, 2012, 756, 71.	4.5	65
10	The ALMA Frontier Fields Survey. Astronomy and Astrophysics, 2017, 597, A41.	5.1	54
11	The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths. Publications of the Astronomical Society of the Pacific, 2018, 130, 015002.	3.1	50
12	Turbulent Gas in Lensed Planck-selected Starbursts at zÂâ^¼Â1–3.5. Astrophysical Journal, 2021, 908, 95.	4.5	50
13	Calibration of ALMA as a Phased Array. ALMA Observations During the 2017 VLBI Campaign. Publications of the Astronomical Society of the Pacific, 2019, 131, 075003.	3.1	42
14	A NEW INFRARED COLOR CRITERION FOR THE SELECTION OF 0 & lt; <i>z</i> < 7 AGNs: APPLICATION TO DEEP FIELDS AND IMPLICATIONS FOR <i> JWST </i> SURVEYS. Astrophysical Journal, 2012, 754, 120.	4.5	41
15	LENS MODELS OF <i>HERSCHEL</i> SELECTED GALAXIES FROM HIGH-RESOLUTION NEAR-IR OBSERVATIONS. Astrophysical Journal, 2014, 797, 138.	4.5	40
16	REST-FRAME UV-OPTICALLY SELECTED GALAXIES AT 2.3 ≲ <i>z</i> and Passively Evolving Galaxies. Astrophysical Journal, 2012, 749, 149.	RMING	35
17	<i>Herschel</i> -ATLAS and ALMA. Astronomy and Astrophysics, 2014, 568, A92.	5.1	33
18	Investigating evidence for different black hole accretion modes since redshift $z\hat{A}\hat{a}^1/4\hat{A}1$. Monthly Notices of the Royal Astronomical Society, 2014, 440, 339-352.	4.4	31

#	Article	IF	Citations
19	NOEMA redshift measurements of bright <i>Herschel</i> galaxies. Astronomy and Astrophysics, 2020, 635, A7.	5.1	31
20	GRB 980425 host: [C I], [O I], and CO lines reveal recent enhancement of star formation due to atomic gas inflow. Astronomy and Astrophysics, 2016, 595, A72.	5.1	29
21	The first supermassive black holes: indications from models for future observations. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2694-2709.	4.4	29
22	Molecular gas, dust, and star formation in galaxies. Astronomy and Astrophysics, 2017, 602, A68.	5.1	26
23	GOODS-ALMA: Optically dark ALMA galaxies shed light on a cluster in formation at $\langle i \rangle z \langle i \rangle = 3.5$. Astronomy and Astrophysics, 2020, 642, A155.	5.1	24
24	The ALMA Frontier Fields Survey. Astronomy and Astrophysics, 2017, 604, A132.	5.1	23
25	Close-up view of a luminous star-forming galaxy at $\langle i \rangle z \langle j \rangle = 2.95$. Astronomy and Astrophysics, 2021, 646, A122.	5.1	23
26	ULTRA STEEP SPECTRUM RADIO SOURCES IN THE LOCKMAN HOLE: <i>SERVS </i> IDENTIFICATIONS AND REDSHIFT DISTRIBUTION AT THE FAINTEST RADIO FLUXES. Astrophysical Journal, 2011, 743, 122.	4.5	22
27	The Molecular Gas in the NGC 6240 Merging Galaxy System at the Highest Spatial Resolution. Astrophysical Journal, 2020, 890, 149.	4.5	20
28	A <i>Spitzer</i> survey of Deep Drilling Fields to be targeted by the Vera C. Rubin Observatory Legacy Survey of Space and Time. Monthly Notices of the Royal Astronomical Society, 2020, 501, 892-910.	4.4	19
29	A MULTI-WAVELENGTH APPROACH TO THE PROPERTIES OF EXTREMELY RED GALAXY POPULATIONS. I. CONTRIBUTION TO THE STAR FORMATION RATE DENSITY AND ACTIVE GALACTIC NUCLEUS CONTENT. Astrophysical Journal, 2010, 719, 790-802.	4.5	15
30	The bright extragalactic ALMA redshift survey (BEARS) I: redshifts of bright gravitationally lensed galaxies from the <i>Herschel</i> ATLAS. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3017-3033.	4.4	14
31	Optical, Near-IR, and Sub-mm IFU Observations of the Nearby Dual Active Galactic Nuclei MRK 463. Astrophysical Journal, 2018, 854, 83.	4.5	13
32	BULGELESS GALAXIES AT INTERMEDIATE REDSHIFT: SAMPLE SELECTION, COLOR PROPERTIES, AND THE EXISTENCE OF POWERFUL ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2014, 782, 22.	4.5	12
33	The dependency of AGN infrared colour-selection on source luminosity and obscuration. Astronomy and Astrophysics, 2014, 562, A144.	5.1	12
34	The ALMA Frontier Fields Survey. Astronomy and Astrophysics, 2020, 633, A160.	5.1	10
35	MULTI-WAVELENGTH LENS RECONSTRUCTION OF A PLANCK AND HERSCHEL-DETECTED STAR-BURSTING GALAXY. Astrophysical Journal, 2016, 829, 21.	4.5	9
36	EXTINCTION AND NEBULAR LINE PROPERTIES OF A <i>herschel</i> schelcted Lensed Dusty Starburst AT <i>z</i> = 1.027. Astrophysical Journal, 2015, 805, 140.	4.5	8

#	Article	IF	CITATIONS
37	How to Fuel an AGN: Mapping Circumnuclear Gas in NGC 6240 with ALMA. Astrophysical Journal Letters, 2019, 885, L21.	8.3	7
38	Dying of the Light: An X-Ray Fading Cold Quasar at zÂâ^1/4Â0.405. Astrophysical Journal, 2020, 903, 106.	4.5	7
39	VALES V: a kinematic analysis of the molecular gas content inH-ATLAS galaxies atzÂâ^¼Â0.03–0.35 using ALMA Monthly Notices of the Royal Astronomical Society, 2019, 482, 1499-1524.	·4.4	6
40	HOT-DUST (690 K) LUMINOSITY DENSITY AND ITS EVOLUTION IN THE LAST 7.5 GYR. Astrophysical Journal, 2013, 776, 117.	4.5	3
41	A SCUBA-2 selected Herschel-SPIRE dropout and the nature of this population. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5317-5334.	4.4	3
42	Cosmic evolution of molecular gas mass density from an empirical relationship between <i>L</i> 1.4 GHz and <i>L</i> 2CO. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1760-1770.	4.4	3
43	SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at zÂ=Â1.03. Astrophysical Journal, 2018, 864, 60.	4.5	2
44	Tracing the Ionization Structure of the Shocked Filaments of NGC 6240. Astrophysical Journal, 2021, 923, 160.	4.5	2
45	The molecular gas properties in the gravitationally lensed merger HATLAS J142935.3–002836. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2366-2378.	4.4	1
46	An ACA 1 mm survey of HzRGs in the ELAIS-S1: survey description and first results. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5259-5278.	4.4	1
47	Witnessing a Link Between Starburst and AGN Activities at 2 < z < 4?. Thirty Years of Astronomical Discovery With UKIRT, 2011, , 185-187.	0.3	0